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Chapter 1

Introduction

Oftentimes econometricians are faced with econometric models in which both
parameters that are of interest to the economist, and those that are not, called
nuisance parameters, are present. While statistical inference is drawn only on
the parameters of interest, the treatment accorded by the investigator to the
nuisance parameters can significantly affect the results. As an example, consider
MaCurdy’s (1981) model of life-cycle labor supply as discussed in Hsiao (1986).

Here the econometric model of labor supply is as follows:
yp =i + Bz +ui, t=1,....1, t=1,...T,

where 1, is the logarithm of the labor supply of individual 7 at time t, z; is the
logarithm of the real wage rate, and ¢, is a combination of unknown regressors and
parameters relating to the individual’s utility function. Here 3 is the elasticity of
labor supply with respect to the wage, and is clearly the parameter of interest. c,
on the other hand, is a nuisance parameter in the sense that we have no special
interest in the specific value it takes. However, as is well known, attention must
be paid to o; before statistical inference on [ can be conducted.

The most common way of dealing with nuisance parameters is to replace the
unknown nuisance parameters with consistent estimates of these same parameters.

While such a technique may be justified asymptotically, it is possible that this
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method may create additional variation in the statistics used to draw inference
on the parameter of interest. This could potentially impair the accuracy of the
asymptotic approximation of the distribution of the test statistics (see Andrews
(1991) for one example of this). This problem is typically more severe in the
presence of infinite-dimensional nuisance parameters.

Infinite-dimensional nuisance parameters present yet another problem: It may
simply not be possible to estimate them consistently from the available data. An
example of such a situation is the panel data model presented above. If J is fixed
and T — oo, clearly the a’s cannot be estimated consistently. In such situations,
solution techniques other than estimation are called for.

This dissertation, which consists of seven chapters, studies ways of dealing with
nuisance parameters in econometric models without having to estimate them di-
rectly. More specifically, means of conducting inference on the parameters of
interest, that are robust to the structure implied by the nuisance parameters,
are studied. One line of research explores the possibilities of conducting sepa-
rate inference on the parameters of interest in likelihood models, which contain
nuisance parameters. This work builds upon the theory of local cuts. The other
line of research concerns hypothesis testing in models with serial correlation or
heteroskedasticity of unknown form. In this setting, a test statistic that is robust
to different error structures, (and does not require an actual estimate of the error
structure) is developed.

The second chapter explores the notions of local cuts and adaptivity in general
models that contain both parameters of interest and nuisance parameters. A
parameter estimate is said to be adaptive if it is efficient on the model where the

nuisance parameters are known and fixed, for all possible values of the nuisance
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parameters. Adaptivity therefore ensures efficient, separate estimation in the
presence of nuisance parameters, and thus imposes restrictions on both the model
and the specific estimator used. In contrast, the concept of local cuts is defined
at the level of the model. Suppose it is the case that the model function (e.g.,
the likelihood function) can be written as the product of a marginal component
(the density of a sufficient statistic for a subset of the parameters) depending on
one set of parameters, and a conditional component (the distribution of the data
conditional on the sufficient statistic), depending on the rest of the parameters.
Then the model is said to contain a proper cut. Because of the nature of the
split of the model function, inference can be conducted using only one part of
the model function (separate inference). When such a split is only asymptotically
possible, the model is said to have a local cut, and separate, asymptotic inference
is justified. Thus local cuts provide us with a framework where separate inference,
as opposed to merely separate estimation, is possible. This chapter explores the
linkages between the concepts of local cuts and adaptivity, and provides intuitive
geometric conditions under which these two concepts are equivalent. Furthermore
guidelines are provided for situations where it is necessary to reparametrize the
model in order to obtain a local cut or an adaptive estimator. This chapter as
well as the third chapter is based on joint work with Nicholas M. Kiefer.

The third chapter extends the concept of local cuts to an estimating equation
environment. The primary advantage of working in the estimating equation en-
vironment compared to the likelihood environment is that less direct knowledge
about the distribution of the data is required. This implies that the theory is
applicable to a larger set of models, such as, for example, the standard regression

models. One obstacle to defining local cuts in the estimating equation frame-
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work is that the estimates obtained from estimatingvequations are invariant to
all full-rank multiplicative transformations of the estimating equation, while the
asymptotic distribution of the estimating equation is not. This creates a problem
because we define local cuts from the properties of the asymptotic distribution
of the estimating equation, but these properties change from transformation to
transformation. Tc overcome this obstacle, we define a transformation of the es-
timating equation which eliminates this indeterminacy. Because of the specific
properties of this transformed estimating equation, a very clear one to one rela-
tionship between local cuts in the estimating equation framework and the ability
to conduct separate inference appears. Finally, the dynamic regression model,
which will be investigated in great detail in chapters four through six, is intro-
duced. We show that there is a local cut in this model in the estimating equation
sense, justifying separate inference on a transformation of the regression param-
eter. In later chapters we show that this allows us to conduct inference on the
regression parameter itself, if the test statistic is constructed just right.

The fourth chapter lays the foundation for a new test statistic that is robust to
serial correlation/heteroskedasticity of unknown form. The statistic is developed
to test hypotheses in linear regression models of the form introduced in the third
chapter. The novel aspect of these tests is that they are simple and do not require
heteroskedasticity and autocorrelation consistent (HAC) estimators; hence the
size distortion caused by the estimation of the correlation structure is eliminated.
The development of the new test relies upon a data-dependent transformation of
the ordinary least squares estimates of the parameters. The approach expands the
class of available HAC-robust asymptotically pivotal statistics. It is established

that the limiting null distributions of these new tests have distributions that de-
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pend only upon the number of restrictions. This method of testing is applied to an
empirical example and it is illustrated that the size of the new test is usually less
distorted than tests that utilize HAC estimators. Examples where the new tests
have greater finite sample power than tests using HAC estimators are provided.
This chapter as well as the next is based on joint work with Nicholas M. Kiefer
and Timothy J. Vogelsang.

In the fifth chapter, the test statistics introduced in the fourth chapter are ex-
tended to a non-linear weighted regression environment. Again the error structure
is allowed to contain heteroskedasticity and serial correlation of unknown form.
It is established that the class of tests introduced in the fourth chapter is appli-
cable in this framework as well. Furthermore, an empirical example illustrating
this new test statistic is provided. Specifically, the long-run effect of GDP growth
on the growth of total restaurant revenues is examined using the new method,
as well as methods currently employed in the literature. Finally simulations are
performed, establishing that the size of the new test is less distorted than that of
tests currently in use. Finite sample power for the different methods is studied
as well, and it is demonstrated that power of the new test can dominate tests
currently in use.

In the sixth chapter, the techniques introduced in the fourth and fifth chap-
ters are employed to develop a test statistic that is robust to serial correla-
tion/heteroskedasticity of unknown form in a cointegration environment that in-
corporates linear polynomial trend functions. The test can be employed to conduct
inference on the trend function or the cointegration vector in a cointegration rela-
tionship, and to test hypotheses about the parameters of the deterministic trend

function of a univariate time series. Extensive simulation experiments investigate
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the properties of the new test statistic in finite samples. These reveal that size dis-
tortions are generally less than those of tests currently employed in the literature;
moreover, there is no substantial reduction in power.

The final chapter provides a concise summary of the main results and suggests

some directions for future research.

TN
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Chapter 2

Local Cuts and Adaptivity

2.1 Introduction

When empirical analysis of an economic model is conducted, the relevant econo-
metric model often contains both parameters that are of interest and some that
are not, called nuisance parameters. The treatment of the nuisance parameters
can affect the results of inference on the parameters of interest in a non-trivial
manner. In fact, the ability to conduct inference may be impaired even when
consistent and efficient estimates of the nuisance parameters can be obtained.

In this chapter, we will examine closely two concepts pertaining to models
with nuisance parameters. The two concepts on which we will concentrate are
adaptivity and local cuts. Adaptivity ensures efficient, separate estimation in the
presence of a nuisance parameter. Local cuts provides us with a framework where
separate inference may be justified.

An estimator is said to be adaptive if it is asymptotically normal and the
best estimator in terms of efficiency whether or not the nuisance parameter is
known. It is intuitively clear, that when an estimator has this property, separate
estimation is justified. Separate inference is not however, because the asymptotic
distribution of the estimator could depend on the nuisance parameter.

A local cut is an asymptotic version of a proper cut. A model is said to
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contain a proper cut if the model function (e.g. the likelihood function) can be
written as the product of a marginal component, the density of a sufficient statistic
for a subset of the parameters, and a conditional component (the distribution
of the data conditional on the sufficient statistic), depending on the rest of the
parameters. Because of the nature of this split, separate inference is now justified
on one set of parameters in the marginal component and on the other set of
parameters in the conditional component (Barndorff-Nielsen (1978)). When this
split occurs only asymptotically, as opposed to in finite samples, the model is said
to contain a local cut, and separate asymptotic inference may be justified. The
idea behind local cuts as introduced by Christensen and Kiefer (1994) is exactly
this; that most of the inference we conduct is asymptotic, and it therefore seems
unnecessarily strict to require the model function split in finite samples.

In this chapter we first investigate the properties of models containing lo-
cal cuts, with special attention being paid to regular models. The main results
of this investigation is that both adaptivity and local cuts are closely linked to
block-diagonality of the asymptotic Fisher information matrix. The results of this
investigation are then used to provide specific conditions under which local cuts
and adaptivity are equivalent. We show that it is relatively simple to obtain an
adaptive estimator in a model where there is a local cut. When we have an adap-
tive estimator, it is a little more complicated to obtain a local cut. The additional
restrictions that must be placed on the model, are restrictions on the asymptotic
Fisher information and the way it depends on the nuisance parameters.

The rest of the chapter is organized as follows. In Section 2.2, we set up the
framework we will be using, and provide the mathematical definitions of local

cuts and adaptivity. A specific example of a model allowing a local cut is also
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presented. In Section 2.3, we first explore the properties of models that allow
local cuts. Then these properties are exploited to formally link local cuts and

adaptivity. Section 2.4 concludes.

2.2 Framework and Definitions

We examine i.i.d. observations, each of which is generated by the density F.
The model, which is parametric and regular, is defined by P = {F:6 € ©},
where © ¢ R™. In order to define local cuts and adaptivity, we will assume that
6 consists of two sets of parameters, such that © =V x ¥, 67 = (v,n)T , VeV
and n € ¥. Let P;(n,) be the model where n is kept fixed at 7,, implying
P, (ny) = {Ps : 7 =14, v € V'}. Throughout the chapter, ¥ is an estimate of the
parameter v, and it is implicitly assumed that © can depend on the entire data
set (typically n observations). Whenever we have a specific estimator in mind, we
will make it clear in the text. We are now in a position to define various properties

of estimators.

Letting L denote a limit law, local Gaussian regularity is defined as follows:

Definition 1 Let {6,}, 6~ € © be a sequence such that V1 |6 — 60| stays bounded.

Then © is a locally Gaussian regular (LGR) estimate of v at Py, if,
Lo, (vVn (0 —v(Fs))) — Lo
where Lq is Gaussian and does not depend on {6} -
Adaptivity may now be defined following Bickel et. al. (1993).

Definition 2 ¥ is an adaptive estimate of v in the presence of n if ¥ is LGR on

P and efficient in the model Py (n), Vn.
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Note that it is the efficiency of ¥ in the model P; (n) as opposed to the model
P that is imporiant. An estimator is efficient on a given model when it obtains
the Cramer-Rao bound for that specific model. The Cramer-Rao bound in the
model P; (n) is ‘lower’ than in the model P in the sense that the matrix difference
is negative semi-definite. These two Cramer-Rao bounds are only equal when the
asymptotic Fisher information is block-diagonal. Therefore, a necessary condition
for an estimate to be adaptive, is that the information matrix be block diagonal
(this result can be found in Bickel et. al. (1993) and is formally stated in Theorem
4 below). It is, however, perfectly possible that some or all of the non-zero entries
of the information matrix depends on the nuisance parameter (n), and therefore
the asymptotic variance of © depends on the specific value of 7. It is in this sense
that the concept of adaptivity justifies separate estimation, but, in general, not
separate inference.

Local cuts impose conditions directly on the likelihood function, and do not
require regularity or that we are in a Gaussian environment. In fact, we can
define local cuts without having to specify which is the nuisance parameter and
which is the parameter of interest. The reason for this is that local cuts treat the
parameters symmetrically. Also, it is not required that we specify exactly which
estimator will eventually be employed, although the relevant estimators will all
be similar in spirit to maximum likelihood estimators.

Letting p (x; v, n) be the likelihood function for n data points, we define local

cuts following Christensen and Kiefer (1994).

Definition 3 Letting T be a statistic (function of the data), first define f.(n),
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sc (), sm (n) and fm (v) by the following four equations:

. 1np<X;v,n+ ﬁT)—mp(x;u,an) = O (nte®) 2.1)
— - — —LSC(U)

np (x vt f,an) Inp(cv,n[T) = O (n~d=?) (2.2)
J —%sm(n)

Inp T;‘Uﬂ?+7—r‘L —Inp(T;v,m) = O(n 2%m ) (2.3)

Inp (T;v+%,n> “hmp(Tivn) = O(n ), (24

where € = (€1, .1 Em,) and § = (81, -..,6m,) satisfy 68 =ee’ = 1. Then T consti-

tutes a local cut when:

fc(n) >0 ZSC(’U), fm (U) >02> 5, (77) (2-5)

Note that the notation is such that f. is the fast rate (f) in the conditional
distribution (), s, is the slow (s) rate in the marginal (,,) distribution and so on.
The first inequality in (2.5) requires the effect on the conditional log-likelihood of
permutations of 7 to disappear faster than those of v. The second inequality in
(2.5) makes a similar statement about the marginal log-likelihood function. It is in
the sense that the parts of the likelihood function depend more on one parameter
than the other. The separation of the fast and the slow rates by 0 ensures that
the model will have a cut asymptotically.

The requirement that the rates be separated by 0 was not explicitly included
in Christensen and Kiefer (1994). From Definition 3, it is clear that if the fast
rates exceed 0, the difference in the likelihoods caused by the permutation of the

nuisance parameters is o (1) :

mp(x;v,n+ \/—IT>—1np(X;v,an) = 0 (n ¥} =o(1)

1np<T;v+ —Inp(T;v,n) = O(n'%f"‘(v)>=o(1).

)
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This implies that there will be no asymptotic dependence on the nuisance pa-
rameters in the conditional and marginal likelihoods, and hence asymptotically,

T constitutes a cut.

In practice it turns out that we frequently have a parameter of interest and a
nuisance parameter, where we are not interested in conducting inference on the
nuisance parameter. In such situations, the assumptions of a local cut, which
treats both sets of parameters symmetrically, are unnecessarily strict. We are
thus interested in relaxing the assumptions in a way that reflects the fact that we
are interested in conducting inference on only one parameter. This leads us to the
concepts of marginal and conditional local cuts. Specifically, a marginal local cut

is defined as follows:
Definition 4 T constitutes a marginal local cut when

fo() = 5c(W), fm(@)>028m(m), fe(m) 2 5m (M), fm(v) 2sc(v), (2.6)
where f. (M), s¢(V), fm (V) and sm (n) are defined by (2. 1)-(2.4).

In the same manner, a conditional local cut is defined in the following manner:
Definition 5 T constitutes a conditional local cut when

o) >025.(0), fu(@) Z5m (@), fe(n) 2 sm(m), fm(v) 2 s:(v), (2.7)
where f.(n), sc(V), fm (v) and sm (n) are defined by (2.1)-(2.4).

The concepts of marginal and conditional local cuts will be especially useful
when examining the links to adaptivity below. This is apparent because adaptivity
concentrates on the ability to estimate one parameter and treats the other purely

as a nuisance parameter.
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Clearly, the “quality” of the inference in a model containing a local cut is
affected by the actual difference between the fast and the slow rates. The larger
the difference, the closer we are to a situation where there is a proper cut in the
model. At the other end of the scale, if the fast and slow rates are all identical, the
partial likelihoods depends equally on the two sets of parameters, and separate
inference is clearly not justified. To formalize this intuition accurately, we define

the order of a local cut in the following manner:
Definition 6 A local cut is of order q if

fc(n)—'sc(U)Z‘L fm(v)_sm (77) > q.

The definitions of marginal and conditional local cuts of order ¢ will then
require that only the marginal or the conditional inequality respectively holds
with a difference of q.

The following example provides an example of the concepts presented in a

well-known model.

Example 1 An example of a local cut can be found in the standard one-

dimensional normal distribution. The joint density of n observations is:

p (z; 1,0%) = (270%) "% exp (—% >z - #)2)

Define the statistic, T (z) = = 3_ z;. Then the marginal density of T (z) is:

(M

—) e (55 (T (@) - n)°).

p(T @) = (%)

The density of the data conditional on 7" (z) is:

p(z:p. 0T (z)) = p(?(?;;;’:,~<)72)

_(n+1) 1 n
2\~ ~=%— -1 2 2
= (2r0%)" 7 nTzexp <“oae D zi+ 557 (2) )
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First we will compute the rate as defined by (2.1):

Inp (x;,u + —%,02|T ($)) —Inp (z; 4, o?|T (z)) =Op (n‘%ﬂ> .

Since p (z; £, 62|T (z)) does not depend on p at all, f (u) = o0
Correspondingly, we can find the slow rate in the conditional distribution

as defined by (2.2):

g \ E Sc 0'2
Inp (x;#, o% + j—ﬁlT (I)) —Inp (z;4,0*|T (z)) = Op (n‘ : )>
Algebra (see Appendix A for details) proves that:

inp (530,07 + S=IT (2) ) = Inp (=i 1T ()
=i (o)~ (it ) T () T
= F [ttim] + 4 ] (B - 2+ A} o)

4[] [(F L )]

- || ()
=O0p (1)

se(o?
This implies that — (,_, ) = 0 and therefore that s.(¢?) = 0. We have

now obtained both rates for the conditional distribution, and can turn our

attention to the marginal distribution.
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The fast rate, defined by (2.4), is computed as follows:

Inp (T (z) s 1, 0% + %) —Inp (T (z);p,0%)

n (14 75) + (725) (B X G -m)

N =

= O(n—%) + O(TL‘%)OP(I) = OP(n—%)

a? 5 -
This implies that —1 = ——f'"(z ) or fm(0?) = 1. Now for the final rate,

defined by 2.3:

Inp (T(x);w%,a?) —10p (T (@) 1,0%)
- 5 T@-u-) =@ -
_ 88 (—};Z(xi—m) = 0 (1)

This gives us the final rate: sn, (u) = 0. Holding all these calculations to-

gether, the rates are

fe(p) = 0, sc (‘72) =0, fm (0'2) =1, sm(p) =0.
Comparing with 2.5, we note that T (z) constitutes a local cut.

Note that the local cut in Example 1 is of order 1, but if we were interested in
only o2, we could also view it as a conditional local cut of order infinity. Finally,
since the asymptotic distribution of the estimate of p obtained from the marginal
distribution depends on o2, separate inference is not justified for u, but it is in
fact justified for o2 in the conditional distribution. The following theorem clarifies
that this is no coincidence. In fact, we need a little more than a local cut in a
model to be able to conduct separate inference. The following theorem states the

conditions.
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Theorem 1 Separate inference is justified for both parameters in models contain-
ing local cuts of order strictly greater than I, if % Inp (z|T) does not depend on

n asymptotically, and ;ﬂ—zz Inp (T) does not depend on v asymptotically.

This theorem gives the exact conditions under which separate inference is
justified. Clearly for marginal inference alone, only a marginal local cut of order
strictly greater than one, along with the requirement that 5‘37% Inp (T) does not
depend on v asymptotically, is required. The result for conditional inference is

exactly analog to this.

2.3 Linking local cuts and adaptivity

In this section, we examine closely the links between local cuts and adaptivity.
Adaptivity is a property of locally Gaussian regular estimators. For this reason
it is useful to explore the rates of the local cut when the model is such that the

maximum likelihood estimator is LGR. The following theorem states the r&ﬂt:

Theorem 2 When the model allows a local cut and furthermore ts such that the
mazimum likelihood estimates of both parameters are LGR, then the slow rates

are both equal to 0.

This theorem provides a benchmark for the numerical values of the slow rates
in our subsequent discussion of local cuts. Additionally, if we have a proper cut,
the fast rates will equal infinity. In this sense, a proper cut is nothing but a local
cut of order infinity. Such a result is useful since it pins down the rates of local
cuts in the standard frameworks.

It seems intuitively clear that adaptivity and local cuts are closely linked to

information orthogonality (after -all, some level of orthogonality between the pa-
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rameters should be expected in situations where separate estimation and/or infer-
ence is justified). The restrictions a local cut places on the model function imply
that the asymptotic information matrix is block diagonal. The result is stated in

the following theorem.

Theorem 3 When the model allows a local cut with slow rates equal to 0, the

asymptotic information matric is block-diagonal.

We restrict ourselves to the case where the slow rates are 0, simply because
this is the case where the information matrix is interesting. Recall that it is when
the slow rates are equal to 0 that we are in a LGR environment. The following
theorem provides the connection between adaptivity and block diagonality of the

asymptotic information matrix.

Theorem 4 Whenever an adaptive estimator exists, the asymptotic information

matriz is block-diagonal.

An important point which can be inferred from the proof of this theorem is
that given a LGR estimator, the block-diagonality property is instrumental in
delivering the efficiency of the estimator on P, (n). Notice that when the infor-
mation matrix is block-diagonal, the Cramer-Rao lower bounds on the variance
are the same in P, (n) and P. This is a useful observation, which we state in the

following theorem.

Theorem 5 If ¥ is LGR, efficient on P and the information matriz is block

diagonal, U is adaptive.

We have now established that both adaptivity and local cuts are closely linked

to information orthogonality. In fact, our results indicate that in order to obtain
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either a local cut or an adaptive estimator, we need a model where the asymp-
totic information matrix is block-diagonal. In practice, it is often necessary to
reparametrize the model for it to allow a local cut or an adaptive estimator. As
a practical matter, therefore, when attempting to find the specific reparametriza-
tion, a good starting point would be a model with a block-diagonal information
matrix. As such, out results have significant practical potency. The following the-
orem provides a general reparametrization which always produces a block-diagonal

information matrix.
Theorem 6 Let (v;,72) = (v,n + Lun (Igg) "' v) where

Iy (6) Iy (0)
Ly (8)  Lym (0)

1(8) =

is the asymptotic information matriz of the original model. Then the asymptotic

information matriz of the model parametrized by (v,,72) is block-diagonal.

Note that an important feature of this specific transformation is that it does
not affect the parameter of interest. Another noticeable feature is that the scores
of the transformed ‘parameters are equal to the efficient scores in the original

model:

Inp(v,n) =Inp ("/17 Yo — Luy ([rm)_1 71)
a _ d 1 0
('?)’: Inp ('717 Yo = Lon (Inn) 1 71) = e Inp (v,n) — vy (Ing) : ‘a; Inp (v.7m)
a _1 d
5y, o7 (ris72 = Lon (Ign) ™ 1) = 5y np (V1)
It is well known (see Bickel et. al. (1993)) that this model is the starting point

in the search for adaptive estimates. We have now demonstrated that it is the

appropriate place to start when trying to obtain a local cut as well.
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We are now ready to start examining the connections between adaptivity and

local cuts. The following theorem provides the tie from local cuts to adaptivity.

Theorem 7 If the model allows a local cut, any LGR estimate which is efficient

on P will be adaptive.

The fact that we can find an LGR estimate in a model which allows a local
cut implies that the slow rates will be equal to 0. This by Theorem 3 implies that
the Fisher information matrix is block-diagonal. Theorem 7 then follows directly
from Theorem 5.

Theorem 7 fully describes the additional conditions required to obtain an adap-
tive estimate in a model with a local cut. The insight provided by Theorem 7
is that when the model allows for a local cut, only the additional requirement
that an efficient LGR estimate exists, is required to permit separate estimation
as well. It is worth noting that this extra requirement is needed only because
we have insisted on defining adaptivity in a regular Gaussian environment. One
could imagine defining a broader form of adaptivity where the basic intuition of
adaptivity, namely that efficient estimation be possible as if the nuisance param-
eter was known, but where the restriction of a regular Gaussian framework does
not hold. This generalization would require that efficiency be defined on a broader
class of models. For an example where this has been done, see Saikkonen (1991).

In terms of linking adaptivity and local cuts, what remains to be done is to
examine what additional conditions are required to ascertain whether we have a

local cut in a model with an adaptive estimator.

Theorem 8 If © is adaptive, and [, (6) does not depend on n, then:
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a)fm (1) defined by
Inp (ﬁ;u,n + %) —Inp (¥;v,7) =0 (n—%fm(n))

is strictly greater than 0.

b)sm (v) defined by
Inp (f’?'” + %’n) —Inp(#;v,7) =0 (n—%Sm@))
s 0.

Note that the restriction that I, (6) not depend on 7 corresponds to a flatness
in the direction of the nuisance parameter on the space where the metric is the
information metric. Part a) follows directly from the fact that asymptotic distri-
bution of © does not depend on 7. Part b) follows from the asymptotic normality
of 5. (v).

The following theorem adds the restrictions that are necessary to obtain a

marginal local cut in a model where the MLE is adaptive:

Theorem 9 If Oarpe is adaptive, g s LGR and I, (0) does not depend on

7, then Uppg constitutes a marginal local cut.

Upon examination of Theorems 8 and 9, it is immediate that quite a few
additional conditions are required to obtain a local cut, even when the model
admits an adaptive estimator. This should not come as a surprise. After all,
local cuts are a property of the underlying model, while adaptivity only provides
information about the regularity of the model and the properties of one specific

estimator.
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2.4 Conclusion

In this chapter, we have carefully defined local cuts and adaptivity as well as
marginal and conditional local cuts. We have examined the properties of models
that allow local cuts or adaptive estimators. We stated the exact conditions under
which a local cut implies that separate inference is justified. We have shown that
block diagonality of the Fisher information matrix is a central requirement for
both local cuts and adaptivity when dealing with regular models. We also out-
Iiﬁed a method which may be used to reparametrize the model in order to obtain
block diagonality of the Fisher information matrix. Finally we have studied the
links between local cuts and adaptivity. Since adaptivity is a concept providing
justification for separate estimation, while local cuts provide a basis for separate
inference, one expects that several additional conditions are required to obtain a
local cut in a model which admits an adaptive estimator. This expectation is ful-
filled. Specifically, we show that the information matrix needs to be insensitive to
the nuisance parameters, and the maximum likelihood estimates of all parameters
need to be “well behaved”. On the other hand, obtaining an adaptive estimate
in a model which allows for a local cut is relatively easy. The only additional
requirement is that a well behaved estimate of the parameters can be found. If
this is the case, this estimate will then be adaptive.

It is often the case that when local cuts are used to justify separate inference,
some estimate of the nuisance parameter is required. Alternatively it might be
possible to condition on some statistic which would make the dependence on the
nuisance parameter disappear. This need for a statistic or an estimate arises
because a local cut only ensures that the score function will be free of nuisance

parameters asymptotically. However, it is quite possible that the finite sample
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score used for estimation may depend on the nuisance parameters. It would be
useful to explore what properties this estimate of the nuisance parameter must
possess. In other words, what the 'worst’ estimate of the nuisance parameter
we could tolerate and still conduct good quality inference on the parameter of

interest. This issue is left for future research.

BRI ZIJL.EH
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Chapter 3

Local Cuts and Estimating
Equations

3.1 Introduction

In the previous chapter, local cuts were analyzed in a likelihood setting. The
likelihood environment requires the researcher to have substantial information
about the data generating process; as such it provides an excellent environment in
which to conduct very detailed analysis. Sometimes, however, we may not be able
to specify the properties of the data generating process in as much detail as the
likelihood environment requires. When this is the case, the estimating equation
environment provides a good alternative. Furthermore, well-known methods of
estimation such as maximum likelihood estimation and ordinary least squares
estimation are all special cases of estimation using estimating functions. Therefore
it seems like the natural next step in the analysis of local cuts to define a similar
concept in an estimating equation environment.

The rest of the chapter is organized as follows. Section 3.2 provides the basic
framework and notation, Section 3.3 defines local cuts in the estimating equation
environment, and Section 3.4 provides an example of a dynamic model where a

local cut in the estimating equation sense can be obtained.

23
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3.2 Framework and definitions

Most of the literature on estimating equations is concerned with finite sample
properties of the estimating equations and the estimates obtained therefrom (see
for example Godambe (1991)).! This typically implies that assumptions are
needed which ensure that various finite sample expectations are known. Instead,
we focus only on asymptotic properties. The main reason for this choice is that
the concept of local cuts is asymptotic; as such, it fits more naturally into a setting
where the focus is on asymptotic properties.

Most of the notation in this section follows Heyde (1997). Unless otherwise
specified, we operate in the class of estimating functions G of zero mean, square
integrable estimating functions G™* = G™ (z,60). At times, we will restrict our-
selves to a subclass 7 of G. As in the previous section, all expectations are taken
with respect to Py. G™ is an m—dimensional vector with mean O for all Py € P.
Furthermore we assume throughout that E (9G"/86) and E (G™(G™)) are non-
singular. We also assume that integration and differentiation can be interchanged
when nzcessary.

As before, we assume that 6 consists of two sets of parameters, such that
9T = (v,n)T. Next, we partition all the relevant terms into the parts involving v

and the parts involving 7, so we write

GT (6
G"(0) = ©
Gy (6)
Furthermore, we assume that
iy, = diag(n®, ...,nm), i, = diag(n?', ...,n’m2)

LAn execption to this is Heyde (1997), who has a chapter on asymptotic quasi-likelihood
methods.
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are two vectors, such that all stochastic variables of the form

n% (GRO)},, i = L,.,m

n? {Gr (@)}, 1 = L..m

converge to a non-degenerate distribution. Finally let 7 = diag(fi,, iy).

3.3 Local Cuts and Estimating Equations

As a parallel to the definition of local cuts in the likelihood framework, we want to
define local cuts in the estimating equation framework as a property of the asymp-
totic distribution of the estimating equation. A property of estimating equations
that complicates this process is the following. Take a given estimating equation,
G™ () = 0, and multiply it by an arbitrary non-singular function (deterministic
or stochastic), which may or may not depend on the parameters. It is well known
that we will still retain an estimating equation, which will provide us with the
exact same estimate of #. While such transformations do not affect the estimation
of the parameter, they may affect the asymptotic distribution of the estimating
equation. As such, defining local cuts here requires much more care than in the
likelihood framework. The ultimate goal is to impose constraints on the asymp-
totic distribution of the estimating equation, such that we obtain a distribution of
the estimate of the parameter of interest which does not depend on the nuisance

parameter. The following definition satisfies this goal:

Definition 7 The model allows a EE-Local Cut for the estimating function G, if

ad -1 X1 (v)
—n | =—G" G™ (8
[69 <0>] @=| o
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where X1 (v) is a stochastic variable which only depends on v and Xo(n) is a

stochastic variable which only depends on 1.

While it may not be immediately obvious that this definition provides us with
a justification for separate inference, the following Taylor expansion of the original
estimating equation provides some additional insight into why a model with an

EE-local cut allows separate inference:
G (8) = o=c"(0) L0 (6-0), e (6:6] «
(6-6) = - [60255)] et

Now we can get at the distribution of the parameter estimates:

7 (6-6) = S [‘1";—9@]_1G(9) N
fin (1 — M) Xa(n)

Clearly, when we have a EE-local cut, 7, (0 —v) = X (v) and 7, (—mn) =
X, (), and separate inference is justified. Because of the invariance to transfor-
mations property of estimating equations, we generally have a lot of flexibility
in our choice of estimating equations. Another way of viewing this definition of
EE-local cuts, is that the relevant estimating equations to use for inference on
v (n) always is the first m; (last ma) rows of the transformed estimating func-

- -1
tion S™(0) = { —n [acao(o)] G™ (6) % . Furthermore, according to the definition,

separate inference is justified when

Xy (v)

Xa(n)

S™(8) =

This transformed estimating function is the same as the one Heyde (1997) uses as

the standardized estimating function when discussing asymptotic Quasi-likelihood.
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Heyde goes on to note that this standardization is convenient. Our discussion
above provides additional justification for using this specific standardization.
A useful property of S™ () is that the transformation of S™ (6) is S™ () itself.

To see this note that for S™ (), 7° = 1, such that

—7 [ia(fl]_ls"(e) — —[5%{—-- [ﬂaa@]_lcn(e)}ylx

(+[52] )

= -7 ﬁ[a—c%f’l]_l ggc"(e)]

- —@ a";,("’)]_ G (8) = S (0) .

We have thus eliminated the freedom of choice in the selection of estimating
functions and picked the one that is relevant for our purposes. Notice that the
property of invariance to the transformation implies that, in practice, the function
is unique and easy to find.

The transformation leading to the choice of S™(6) is similar in spirit to the
parameter transformation in the likelihood framework leading to a model with a
block-diagonal Fisher information matrix. Intuitively, separate inference requires
some orthogonality, specifically information orthogonality, between the two pa-
rameters. The mathematical parallel to block diagonal Fisher information in this
framework, is

plim [%Sﬁ (0)] = plim [%SZ (8)] =0.
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To see that S™ () in fact has this property, note that

0 15} acr _ acr (9Gh ~1 agn - n _ 3Gy (3Gh -
s -5 {(mw 0@ 9) (@%@

-1
_ _(acz _ac (937" 26 agr _ acn (ocn\ L acn
- ov an on dv on an on on

= 0.

In a similar manner, it can be shown that 3%5,’7‘ =0.

As in the likelihood framework, there will be situations where we are interested
in only one of the parameters. In the likelihood framework, we defined marginal
and conditional local cuts to deal with precisely this type of situation. Next, we

introduce a parallel concept.

Definition 8 The model allows a One-Sided EE-Local Cut for the estimating

function G, if

A, [Q_Galj_@] T Gn ) = X ().

This One-Sided EE-Local Cut provides justification for separate inference on v.
Note that we are allowing for a situation where we do not even have an estimating
equation for the nuisance parameter. Since this is not an uncommon situation,
especially if the nuisance parameter is infinite dimensional, this greatly increases
the usefulness of the concept.

We are now ready to look at an example of a situation where estimating equa-

tions are a useful way of thinking about the model.

3.4 A Dynamic Model

Consider the following dynamic regression model

y:/\’ﬁ-*—uv
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where 3 is a (k x 1) vector of regression parameters, X is a (T x k) vector of
regressors which may include a constant, and u = {w,} is 2 mean zero (conditional
on X) random process. It is assumed that u does not have a unit root, but u
may be serially correlated and conditional heteroskedastic. Let v, = X;u; and

define Q = AN = Ty + Z?‘;I(FJ- + I‘;) where ['; = E(vv;_;) and A is a lower

t
i=1

triangular matrix based on the Cholesky decomposition of Q. Define Sy = 3., v;
which are the partial sums of {v;}. Let Wi(r) denote a k-vector of independent
Wiener processes, and let [rT7] denote the integer part of rT where r € [0, 1].
In this model, the parameter of interest is 8, and the parameters relating to the
correlation structure, namely , are nuisance parameters. Clearly there is not
enough available information to analyze this model using maximum likelihood
methods. The standard method used to estimate [ in this type of model is
Ordinary Least Squares (see Hamilton (1994)). This implies that the first order

conditions, or the estimating functions, relating to 3, are
Gg(B)=X'(y—XpB)=0.
We note that under simple regularity conditions, (see Chapter 4)
T-i1X' (y — XB) = T"2X'u = Ni (0,Q) = AW(1),

and therefore, separate inference is clearly not justified. Notice that this is a
situation where we are clearly interested only in one set of parameters, namely 3.
It turns out that it is necessary to transform the regression parameter to be

able to conduct separate inference. To get at the relevant transformation, we need
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a few additional definitions:

Jj=1
T
é == T_ngtgt
t=1
- 1, N\ A
i = (ex) o

In Chapter 4, it will be shown that M => Q“AP,C% where Q = plim(+X'X) and
1
P?2 is a stochastic variable that does not depend on any parameters. We now let

B=M ;Iﬁ such that the estimating equation for 3 becomes

G5 (B) = Mr'x" (y - XMB) =0.
We can now find the asymptotic distribution of the transformed estimating equa-
tion.

- -1
_i, aGggﬁ) G (ﬁ) - 1% [_M’X’XM]_IM’X’ (y—XMB)

= TENY(XX)T X (y - XMB)

= PIATIQQTIAWL (1) = PEWi(1).

Thus, the asymptotic distribution of the transformed estimating equations does
not depend on any nuisance parameters, and therefore this model allows for a
One-Sided EE-Local Cut. Hence, separate inference is justified. To verify this,
notice that the asymptotic distribution of B = M3 is P,é Wi (1), which does

not depend on any nuisance parameters. To foreshadow, in Chapter 4 we will
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show that this result actually allows us to construct a test for hypothesis on the

untransformed parameter, (3, which does not depend on nuisance parameters.
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Chapter 4

Simple Robust Testing of
Regression Hypotheses

4.1 Introduction

In this chapter we consider the problem of hypothesis t:esﬁing in models with errors
that have serial correlation or heteroskedasticity of unknown form. This situation
is often encountered in regression models applied to economic time series data. It
is a classic textbook result that while ordinary least squares (OLS) estimates of
regression parameters remain consistent and asymptotically normal when errors
are heteroskedastic or autocorrelated (provided usual regularity conditions hold
and no lagged dependent variables are in the model), standard tests are no longer
valid. If the true form of serial correlation/heteroskedasticity were known, then
generalized least squares (GLS) provides efficient estimates and standard infer-
ence can be conducted on the GLS transformed model. But, in practice the form
of serial correlation/heteroskedasticity is often unknown, and this has led to the
development of techniques that permit valid asymptotic inference without having
to specify a model of the serial correlation or heteroskedasticity. The most com-
mon approach is to estimate the variance-covariance matrix of the OLS estimates
nonparametrically using spectral methods (heteroskedasticity and autocorrelation

consistent (HAC) estimators) and construct standard tests using the asymptotic

32
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normality of the OLS estimates. HAC estimators have been extensively analyzed
in the literature and important contributions are given by Andrews (1991), An-
drews and Monahan (1992), Gallant (1987), Hansen (1992), Newey and West
(1987), Robinson (1991) and White (1984) among others. The benefit of HAC
estimator tests is asymptotically valid inference that is robust to general forms of
serial correlation/heteroskedasticity in the errors.

We propose an alternative method of constructing robust test statistics. We
apply a non-singular data dependent stochastic transformation to the OLS esti-
mates. The asymptotic distribution of the transformed estimates does not depend
on nuisance parameters. Then, test statistics which are asymptotically invariant to
nuisance parameters (asymptotic pivotal statistics) are constructed. The resulting
test statistics have nonstandard asymptotic distributions that only depend on the
number of restrictions being tested, and critical values are easy to simulate using
standard techniques. The main advantage of our approach compared to standard
approaches is that estimates of the variance-covariance matrix are not explicitly
required to construct the tests. This is potentially importan§ since simulation
studies have shown that sampling variability of HAC estimators in finite samples
can lead to tests that have substantial size distortions (e.g. Andrews (1991), An-
drews and Monahan (1992) and Den Haan and Levin (1997)). We report results
from finite sample simulations which show that our new tests have better finite
sample size properties than HAC estimator tests (including prewhitening).

The transformation of the OLS estimates used in this chapter is the same
transformation used in the dynamic example of Section 3.4. There, it was shown
that when this transformation is carried out, the model allows a One-sided EE-

local cut. It should not come as a surprise therefore, that separate inference can be
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conducted on the transformed parameter. In this chapter, we show that separate
inference can be conducted on the original regression parameter as well.

The remainder of the chapter is organized as follows. In the next section
we lay out the model and review some well known OLS results. We show how
the OLS estimates can be transformed so that their joint distribution becomes
asymptotically invariant to serial correlation/heteroskedasticity nuisance param-
eters. Natural by-products of this transformation are ¢ type statistics for testing
hypotheses about individual parameters. In Section 4.3 we show how to construct
tests of general linear hypotheses. Limiting null distributions are obtained, and
asymptotic critical values are tabulated. The tests developed in these sections
are natural extensions to regression models of the univariate trend function tests
proposed by Vogelsang (1998). The tests in Vogelsang (1998) share the property
that serial correlz;,tion parameters need not be estimated to carry out valid asymp-
totic inference. In Section 4.4 we show how our approach easily extends to GLS
and instrumental variables (IV) estimation. We report results on local asymptotic
power of the new tests compared to HAC estimator tests in Section 4.5. We show
that the new tests have nontrivial local asymptotic power that is comparable but
slightly below that of HAC estimator tests. We note that local asymptotic power
calculations for HAC estimator tests are the same as those for tests with known
variance-covariance parameters, while our statistic implicitly corrects for unknown
variance-covariance parameters. In Sections 4.6 and 4.7 we report results on the
finite sample behavior of the tests. Because the local asymptotic power approxi-
mation does not capture the influence of sampling variability of HAC estimators
on finite sample power, we provide cases based on an empirical example where the

power of the new tests dominates power of HAC estimator tests. Since our tests
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can be more powerful and they dominate HAC estimator tests in the accuracy
of the asymptotic null approximation, our tests are very competitive in practice.

Section 4.8 concludes with proofs given in Appendix B.

4.2 The Model and Some Asymptotic Results

Consider the regression model given by

Y = XC,B + Uy, t= 1727 see3 T'l (4'1)

where 3 is a (k x 1) vector of regression parameters, X, is a (k x 1) vector of
regressors which may include a constant, and {u.} is a mean zero (conditional on
X,) random process. It is assumed that u, does not have a unit root, but u, may be
serially correlated and conditional heteroskedastic. The following notation is used
throughout the chapter. Let v, = X,u, and define @ = AA" =To+ > 72, (T + )
where T'; = E(vv;_;) and A is a lower triangular matrix based on the Cholesky
decomposition of 2. Note that 2 is equal to 27 times the spectral density matrix
of v, evaluated at frequency zero. Define S; = Z§'=1 v; which are the partial sums
of {v;}. Let Wi(r) denote a k-vector of independent Wiener processes, and let
[rT] denote the integer part of 7T where r € [0,1]. We use = to denote weak
convergence.

The following two assumptions regarding X, and u, are sufficient for us to

obtain our main results.

Assumption 1 Tz E;Tll v, = AWi(r) for all r € [0, 1].

Assumption 2 plim(T™! ZE;TJ X.X,)=rQ foralrel0,1] and Q7" exists.
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Assumption 1 holds under a variety of regularity conditions. One set of conditions
are given by Phillips and Durlauf (1986) which require that v be weakly station-
ary, that the elements of v: have a finite moment greater than two, and that v
satisfies well known c-mixing conditions. These conditions permit conditional het-
eroskedasticity in {v;} but rule out most forms of unconditional heteroskedasticity.
Andrews (1991) showed that consistent HAC estimators can be obtained under
the stronger assumption that {v} is fourth order stationary and o-mixing (see his
Lemma. 1). Assumption 1 is also satisfied by stationary and invertible ARMA pro-
cesses with innovations with finite fourth moments (see Hall and Heyde (1980)).
Assumption 1 rules out unit roots in {X.} and {u.}.

Assumption 2 holds, for example, when X; is a weakly (second order) station-
ary vector process and rules out trends in the regressors. However, the asymptotic
results remain valid for certain hypotheses if the regressors are trend stationary.
To be more precise suppose the regression model is . = g+t + X;ﬁ + u, and
X, = p, + 7.t + ¢, where p, and vy, are (k x 1) vectors, and {¢,} and {C,u:}
satisfy Assumptions 1 and 2. In Appendix Bwe show that the new statistic pro-
posed in this chapter is invariant to projections of subsets of regressors. There-
fore, hypotheses involving 8 can be tested using the regression 7. = X, + @
where {#:} and {X,} are residuals from the projection of {y.} and {X.} onto the
space spanned by {1, t}. This regression satisfies Assumptions 1 and 2 because
X, = (, and it is easy to show that T3 ZY:TJ Coup =T2 ZE’;TII C,u; + op(l) and
Tt ngll étit =T ZE;TJ C,C,+o0p(1). Once {t} is included in the regression, the
asymptotic results we obtain for tests of the § parameters do not apply to tests
that involve the parameters u (the intercept) or 7 in which case the asymptotic

distributions depend on the specific deterministic trends included in the regres-
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sion.
Suppose regression (4.1) is estimated by OLS to obtain B, the OLS estimate.
The limiting distribution of T3 (8 — B) follows directly from Assumptions 1 and 2

as

Ti(3 — B)

T T T
(TS XX)T T2 Xowe = (T S X X,) T TT250(4.2)
t=1 t=1 t=1

= Q7 'AWi(1) ~ N(0,Q7'ANQ™") = N(0,Q7'QQ ™) = N(O, V).

This asymptotic normality result can be used to test hypotheses about 8. To
construct standard tests that are asymptotically invariant to nuisance parame-
ters, an estimate of V = Q~'QQ! is required. A natural estimator of Q' is
(T'SSL X, X;)™!. A HAC estimator of  can be constructed from 9, = X,
where 4, are the OLS residuals.

Consider the estimator ¥ = (T-' "L X, X)) 'QUT ' I, X, X;)™" where O
is a HAC estimator of Q. If we transform T%(3 — 3) using
V-2 = (T'S°L, X, X;)"'A where A is obtained from the Cholesky decomposi-

tion of Q, we have

V-IT3(3 - B) = N(O, Ix). (4.3)

N

Using (4.3), hypotheses about individual 3's can be tested using ¢ statistics in the
usual way with standard errors given by square roots of the diagonal elements of
tne matrix V/T. The asymptotic theory does not explicitly account for the effects
of sampling variation in V. and this variation it is potentially important in finite
samples.

We take a different approach to testing that is similar in spirit to the trans-

formation in (4.3) except that we transform T2(3 — B) using a moment ma-
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trix constructed from the data that does not require an estimate of §2. Define
S = Z;‘=1 Xju; = Z;=1 ;. Using Assumptions 1 and 2, the limiting behavior of

T“%S[rn asT — o0 is

(rT] [Tl
T3S,y = T3> Xa=T"7% {Xu—XX/(6-0)} (4.4)
t=1 t=1
. [rT} [rT] ) .
= T72) v — (T XX,) T:(B-P)
t=1 t=1
[Tl

= T 3Spp — Ty XeX,) THB - B)
t=1

= AWi(r) — rQQ'AWi(1) = A(Wi(r) — rWi(1)).

Consider € = T2 Z:T=1 525';- From (4.4) and the continuous mapping theorem

we have

C = A[/ (Wi(r) — rWe(1))(Wi(r) — rWi(1)) dr]A". (4.5)

To simplify later developments let P, = fol(Wk(r) — Wi (1)) (Wi(r) — rWi(1))'dr
which is the integral of the outer pioduct of a k-dimensional multivariate Brownian
bridge. In the univariate case Pj is the limiting distribution of the Cramér-von
Mises statistic and is related to the Anderson-Darling statistic. Because Py is
positive definite by construction, we can use a Cholesky decomposition to write
Py = ZyZ,, or equivalently P, = (Z.)™'Z; ' where Z; is lower triangular.
Now consider B = (T!' 3 X, X,)"'C(T~' Y X X;)™". Define
M= (TS X, X,)"'C  with C2 lower triangular and the Cholesky decomposi-

tion of ¢. Consider the transformation Af~'T %(B — B). It follows directly from
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(4.2) and (4.5):
M™'T3(3 - B) = Z;, Wi(L). (4.6)

This transformation results in a limiting distribution that does not depend on
the nuisance parameters @ and Q. The distribution of Z, ‘Wi (1) is nonstandard.
Because Wi (1) and Wy (r) —rW;(1) are Gaussian and E[W,(1)(Wi(r)—rWi(1))] =
0 for all r € [0, 1], they are independent, and it follows that Z; and Wk(1) are
independent as well. Therefore, conditional on Zx, Z, "We(1) ~ N(0, P, "). If we
let p(P:) denote the distribution function of Pk, we can write the unconditional
distribution of Z, W(1) as fol N(0, P.")p(Py)dP: which is a mixture of normals.
Thus, the distribution of Z, ‘Wi (1) is symmetric with thicker tails than a normal
distribution. This result is analogous to Fisher’s classic development of the ¢
statistic. After using a data dependent stochastic transformation (dividing by a
moment of the data proportional to the error variance), Fisher obtained a finite
sample distribution free of nuisance parameters with fatter tails than a normal
distribution, a t distribution. This analogy is not exact as we obtain a distribution
free of nuisance parameters only asymptotically, and the distribution of Z, "We(1)
is not equivalent to a multivariate ¢ distribution. But, the analogy is accurate as
a nuisance parameter is eliminated and this results in increased dispersion of the
null limiting distribution.

Hypotheses about individual §'s can be tested using ¢ type statistics which we
label ¢* that are constructed in the same way as usual ¢ statistics with the usual
standard errors replaced with square roots of the diagonal elements of the B/T
matrix. Because the ¢* statistics are invariant to the ordering of the regressors,
the limiting distribution of any ¢* is given by the first element in the vector

Z,'Wi(1). Using the fact that Cholesky decompositions are lower triangular, it
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Table 4.1: "Asymptotic Critical values of t*
1.0% 1|25% |50% | 10.0% | 50.0% | 90.0% | 95% | 97.5% | 99.0%
8.544 | -6.811 | -5.374 | -3.890 | 0.000 | 3.890 | 5.374 | 6.811 | 8.544

is easy to show that the first element of Z, ‘Wi(1) has the same distribution as

Wi(1)/{[. (Wi(r) — rWi(1))?dr]%. Therefore, as T — oo

tr = Wl(].)/[/ (Wl(”l‘) —_ TW]_(I))sz]%. (47)

Critical values of (4.7) were computed using simulations and are tabulated in Table
4.1. The Wiener process, Wj(r), was approximated by normalized sums of i.i.d.
N(0,1) pseudo random deviates using 1,000 steps and 50,000 replications. The
simulations were written in the GAUSS programming language using an initial
seed of 1,000 for the random number generator.

We also computed the density of (4.7) and the density of (4.7) with variance
normalized to one by smoothing the 50,000 realizations of (4.7) using standard
kernel techniques.! These densities are plotted in Figure 4.1 along with the den-
sity of a standard normal random variable. The asymptotic distribution of the

normalized ¢t* has tails slightly fatter than a standard normal random variable.

lWe computed the variance of (4.7) to be 10.893 using the sample variance of the 50,000
replications.
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4.3 Tests for General Linear Hypotheses

Suppose we are interested in testing more general linear hypotheses of the form
Hy: RB =, H,: RG #r,

where R is a (¢ X k) matrix with rank g and 7 is a (¢ x 1) vector. When the null
hypothesis is true, we have RB —r = R(B — B). To motivate the new statistic
consider T3 R(3 — 3). From (4.2) it follows that T2 R(3 — 8) = RQ'AWi(1).
Because Wi (1) is a vector of independent Wiener processes and is Gaussian,
RQ™'AWi(1) is equivalent in distribution to A*W;(1) where W; (1) is a (¢ x 1)
vector of independent Wiener processes and A* is the (g x g) matrix square root of
RQ'AANQ'R'. A* exists and is invertible because the matrix RQ'AAN'Q'R’
has full rank of g. Now consider the matrix RBR'. 1t is simple to show that
RBR' = RQ'AP.A'Q 'R which is equivalent in distribution to A*P;A* (see
Appendix B). Let M* denote the matrix square root of RBR’ and note that
M~ = [A*P;A"]% = A*Z;. Suppose we transform Tz R(B — ) using M*~! giv-
ing M*~'T2R(B — B). It evidently follows that M*~'TzR(8 — B) = Z;'W;(1)
which is free of nuisance parameters. Forming the usual quadratic form using
M*~'T:R(3 — j) gives
[M='T3R(3 - B)/[M~'T2R(B - B)] = T(R(B — B))'[RBR]™ R(B — B).
(4.8)
The quadratic form (4.8) suggests the following statistic for testing Hg against
Hy,
F*=T(RB —r)[RBR)™(RB —T)/q.

Notice that F* is the classic F test except that B replaces V. (If T%R(B — B)

were transformed using the matrix square root of RV R', the quadratic form would
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lead to the construction of the classic F' test based on a HAC estimate of V). We

prove in Appendix B the following asymptotic result:

Theorem 10 Suppose that Assumptions 1 and 2 hold. Then under the null hy-
pothesis Hy: RB =1, F* = W (1)'P;'W,(1)/q as T — oo.

The limiting distribution of F* is free of nuisance parameters and only depends '
on q. The distribution is nonstandard, but critical values can easily be simulated
because the distribution is a function of independent standard Wiener processes.
By approximating each Wiener process in the vector W (r) using the same tech-
niques that were used to simulate (4.7), critical values of W,(1)' P, 'W,(1)/q were
computed for ¢ = 1, 2, ..., 29, 30 and are tabulated in Table 4.2. Since the dis-
tribution depends only on g, using Table 4.2 is no more difficult in practice than
using a chi-square distribution table.

Construction of the F* statistic amounts to replacing the HAC estimator,
Q, with € and using the scaling matrix B in place of the usual scaling matrix
V. The scaling matrix B converges to a random matrix rather than the fixed
variance-covariance matrix. Viewed in this way, our approach creates a new class
of statistics that are robust to serial correlation/heteroskedasticity in the errors
and are asymptotically pivotal. In general, an asymptotically pivotal statistic
can be obtained by replacing Q) with any moment matrix of the data that has a
limiting distribution of the form A f(Wi(r))A’ where f(Wy(r)) is a random matrix
that is a functional of Wi(r). Therefore, our particular choice of C is somewhat
arbitrary and to some degree ad hoc, but it yields an elegant distribution theory
with asymptotic distributions that do not depend on R, r or k. Other choices of
C might not satisfy this property. In addition, we prove in Appendix B that our

choice of C ensures that F™* is invariant to projecting out subsets of regressors,
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Table 4.2: Asymptotic Critical values of F*
{ %/a |1 2 3 4 5 6 7 8 9 10 |
90.0 | 28.88 35.68 42.39 48.79 55.02 61.18 67.37 73.1C 78.52 83.84
95.0 | 46.39 51.41 58.17 65.33 71.69 78.70 84.63 90.89 96.38 101.8
97.5 | 65.94 69.76 76.07 83.35 89.65 96.53 102.7 109.8 114.2 120.0
99.0 | 101.2 96.82 100.7 108.4 114.2 121.2 126.9 1344 139.6 144.9

L |

[%/q 11 12 13 14 15 16 17 18 19 20 |

90.0 | 89.39 94.47 100.1 105.3 110.3 115.5 121.2 126.6 131.5 136.5
95.0 | 107.7 113.6 119.9 125.3 131.5 136.6 141.4 147.1 152.9 158.0
97.5 | 127.2 132.9 138.8 145.2 151.0 155.9 161.1 167.6 174.0 179.8
99.0 | 152.6 157.8 163.8 169.7 174.7 181.6 188.8 194.8 203.2 208.5

L |

[%/q]21 22 23 24 25 26 27 28 29 30 |

90.0 | 141.9 146.6 152.1 157.0 161.8 167.2 171.6 177.0 181.6 187.0

95.0 | 163.6 169.3 174.7 180.3 1849 190.7 196.0 201.5 206.4 211.4

97.5 | 186.0 191.2 197.0 202.3 207.5 213.3 2189 224.4 229.1 236.0

99.0 | 214.0 219.3 224.6 230.1 236.3 242.4 2469 252.9 259.8 266.3
Note: q is the number of restrictions being tested.

ie. F* satisfies the Frisch-Waugh-Lovell (FWL) Theorem (see Davidson and
MacKinnon (1993).2 Also, F* has the important practical property of invariance
to rescaling of the regressors (i.e. invariance to units of measurement).®* This
discussion raises the natural question as to whether a theory of optimality can be
created to help guide the choice of C. We leave this interesting and challenging

problem as an open research topic.

2HAC based tests satisfy the FWL Theorem only if a fixed truncation lag is used without
prewhitening. Therefore, if an automatic truncation lag and/or prewhitening is used, different
test statistics can result when one, say, first detrends regressors before estimating a regression
as opposed to directly including a trend in the regression. See Section 7 for an example.

3 As a referee pointed out, the F* statistic is not invariant to the ordering of the observations
(as is White’s HC estimator). We anticipate F* being used in time series settings where there
is a natural ordering of the data. Should F* be used in a pure cross section situation, ordering
of the data becomes an issue.
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4.4 Extensions to GLS and IV Estimation

In this section we briefly discuss how the F'* statistic can be applied to more
general regression models which include GLS and IV estimation. Stack Ye, Xt
and u, into matrices y, X, and v and consider a transformation of regression

(4.1),
Yt = X'B+u, (4.9)

where y* = ¥y, X* = ¥X, v* = Yu and ¥ is a (T x T') transformation matrix.
Estimating (4.9) by OLS is equivalent to minimizing (y* — X*8)" ¥'¥(y* — X*0).
When ¥ = 2 where ¥ = F(uu’) we obtain the GLS estimate of 3. When ¥ =
Z(2'Z)~1Z' where Z is a (T'xm) vector of instruments with m > k and E(Z,u,) =
0, we obtain the IV estimate of 3. Provided that v; = X;u; and T-! Y17 X7 X7/
satisfy Assumptions 1 and 2, Theorem 10 still applies to F'* constructed from
regression (4.9). In the case of IV estimation, sufficient conditions are stationary
Z, and plim(T~' Y., Z. X,) # 0.

The natural extension beyond regression (4.9) is to consider a generalized
methods of moments (GMM) framework which would include OLS, GLS and IV as
special cases. This would be an important extension as GMM models are widely
used in empirical macroeconomics. We conjecture that Theorem 10 generalizes to
GMM models, but it is not clear whether standard GMM regularity conditions will
be sufficient to obtain such a result. Furthermore, in overidentified GMM models,
it is not obvious whether F™* should be constructed using sample analogs of the
original moment conditions or sample analogs of the moment conditions implied
by the weighted GMM minimization problem. It is unclear how the choice of
weighting matrix will affect the asymptotic properties of F'*. An extension to

GMM models is nontrivial and is beyond the scope of this chapter.
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4.5 Local Asymptotic Power k =1 Case

In this section we contrast the power properties of the t* and HAC estimator
t statistic using a local asymptotic framework. Of course, both tests have unit
power against nonlocal alternatives. We restrict attention to the single regressor
case (k = 1) as this special case sufficiently illustrates local asymptotic power

comparisons. With k = 1 the regression becomes
ye = B¢ + U, (4.10)

where 8 and z, are scalars and z; is mean zero (this assumption has no effect on the
local power results). We consider testing the null hypothesis Hp : § < B, against
the alternative Hj : § > By + ¢T—%. Under the alternative, we model 3 as local
to B, such that B converges to [, at rate T3 with local alternative parameter c.
Let 02 = E(z2), and let 02 = 7o +2 Y52, ¥; Where v; = E(vv—;) With vy = zeu,.
The parameter o2 is the variance of z;, and the parameter o? is equal to 27 times
the spectral density of v; evaluated at frequency zero. Define 52 =T"! Z;‘;l z2
and let 62 be a HAC estimator of o2 based on 9, = .4, where {4.} are the OLS
residuals from (10). Let S, = Z;zl #; and define C = T2 S8

Using this notation, the HAC estimator ¢ test, tpac, and t* can be calculated

trac = TH(B — B0)/(67°6%67°),
" =TH(B - Bo)/(67°Co7")*.
In Appendix B we show under the local alternative and Assumptions 1 and 2, as

T — oo,
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trac = coifo+ Wi(l) ~ N (co2/o, 1) (4.11)

1

& = (cot /o + Wi(1)/] / (Wi(r) — rWa(1))2dr]. (4.12)

0
Results (4.11) and (4.12) show that local asymptotic power of both statistics
depends on cai‘z’/ o. Naturally, as-c increases, power increases. As o2 increases,
power also increases which follows from the standard regression result that more
variability in the regressors leads to more efficient estimates. As o? increases,
power decreases which follows since variability in {u.} is higher.

The local asymptotic distributions were used to compute asymptotic power
which is plotted in Figure 4.2. The power of tg4c was computed analytically.
The power of ¢* was simulated using methods similar to those used to simulate the
asymptotic critical values. Power was computed using the asymptotic 5% critical
values.* As the figure shows, both statistics have monotonically increasing power
functions. The power of ¢* is nontrivial and is comparable to, but slightly below,

that of £y 4c. In finite samples power of the tests is likely to be closer since the

2 In

asymptotic power of tgac does not reflect the finite sample variability in &
fact, we give examples in Section 4.7 where power of the t*(F™™) statistic exceeds

the power of HAC estimator tests.

41We also computed asymptotic power for 1%, 2.5% and 10% significance levels. The relative
power of the tests is similar to that depicted in Figure 1 and are available upon request.
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4.6 Finite Sample Size

In this section we report the results of an extensive simulation experiment with
the purpose of comparing the finite sample size of HAC estimator tests and the
F* test. We designed the simulations so that they replicate the data generat-
ing processes (DGPs) and estimators used by Andrews (1991) and Andrews and
Monahan (1992).

We consider a regression model with a constant and four stochastic regressors
so that £ = 5. We use the HAC estimator recommended by Andrews (1991)
which uses the quadratic spectral kernel. The truncation lag (or bandwidth)
was chosen using the automatic data-dependent procedure proposed by Andrews
(1991) using the plug-in method based on univariate AR(1) models fit to the
individual elements of 7,. Tests based on this estimator are labeled @S. Consult
Andrews (1991) for additional details. Following Andrews and Monahan (1992),
we also computed HAC estimator tests using pre-whitening based on a VAR(1)
parametric model of 7,. We also employed the eigenvalue adjustment procedure
used by Andrews and Monahan (1992) when fitting the VAR to @,. The pre-
whitening tests are labeled @QS-PW. Consult Andrews and Monahan (1992, p.
957) for additional details. Note that we are comparing our test with tests based
on optimal HAC estimators.

We report results for six of the seven DGPs used by Andrews (1991) and
Andrews and Monahan (1992). The models are: AR(1)-HOMO, where the errors
and stochastic regressors are AR(1) homoskedastic processes; AR(1)-HET1 and
AR(1)-HET?2 where the DGPs are the same as the AR(1)-HOMO DGP except the
error has multiplicative heteroskedasticity; MA(1)-HOMO, where the errors and

stochastic regressors are MA(1) homoskedastic processes; and MA(1)-HET1 and
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MA (1)-HET?2 where the DGPs are the same as the MA (1)-HOMO DGP except the
error has multiplicative heteroskedasticity. In all cases, the regressors and errors
were drawn independently of each other. In the AR(1) models, the stochastic
regressors and errors were generated according to the model n, = pn,_, + e, where
e; is drawn from i.i.d. N(0, I-p?) random variables which results in 7, having
unit variance. The initial condition was drawn from the stationary distribution
of the AR(1) model. In each replication a new set of regressors were randomly
drawn. We transformed the regressor matrix so that 77! ZtT___l XX, is an identity
matrix following Andrews and Monahan (1992, p. 959). For the HET1 and HET?2
models, the errors were first drawn from the AR(1) process and then multiplied
by [Xa:| and l%Zf:z X:| respectively. We report results for p = -0.5, -0.3, 0.0,
0.3, 0.5, 0.7, 0.9, 0.95.

The MA(1) models were generated in a similar fashion with the stochastic
regressors and errors generated according to the model , = e, + fe,; where e,
is drawn from i.i.d. N(0, (1 + 6)~!) random variables which results in 7, having
unit variance. We report results for § = 0.3, 0.5, 0.7, 0.99. In all cases we used

2,000 replications.
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Table 4.3: Finite Sample Null Rejection Probabilities AR(1) Models

Model p F* QS QS- | Model p F* QS QS-
PW PW

-0.50 0.067 0.094 0.079 -0.50 0.082 0.118 0.097

-0.30 0.058 0.073 0.067 -0.30 0.062 0.090 0.080

AR(1)- 0.00 0.059 0.064 0.068 AR(1)- 0.00 0.054 0.070 0.069
HOMO 0.30 0.073 0.078 0.075 | HOMO 0.30 0.065 0.090 0.085
g=1 0.50 0.083 0.103 0089 |g=2 0.50 0.090 0.134 0.109
0.70 0.099 0.143 0.107 0.70 0.128 0.207 0.147

0.90 0.197 0.302 0.211 0.90 0.273 0.440 0.322

095 0.307 0.439 0.314 0.95 0.409 0.611 0.448

-0.50 0.096 0.147 0.127 -0.50 0.104 0.184 0.153

-0.30 0.074 0.109 0.107 -0.30 0.077 0.124 0.121

AR(1)- 0.00 0.059 0.083 0.093 AR(1)- 0.00 0.074 0.089 0.109
HOMO 0.30 0.071 0.115 0.108 | HOMO 0.30 0.089 0.127 0.128
q= 0.50 0.097 0.169 0.131 |g=4 0.50 0.114 0.199 0.162
0.70 0.141 0.262 0.195 0.70 0.169 0.313 0.237

0.90 0.344 0.567 0.429 0.90 0.388 0.651 0.515

0.95 0.491 0.748 0.570 0.95 0.543 0.832 0.658

-0.50 0.075 0.108 0.093 -0.50 0.085 0.127 0.117

-0.30 0.070 0.084 0.080 -0.30 0.071 0.091 0.093

AR(1)- 0.00 0.063 0.069 0.068 AR(1)- 0.00 0.062 0.087 0.086
HET1 0.30 0.075 0.093 0.089 | HET1 0.30 0.073 0.099 0.097
g=1 0.50 0.088 0.119 0.099 | ¢ = 0.50 0.095 0.136 0.118
0.70 0.114 0.166 0.128 0.76 0.125 0.211 0.167

0.90 0.217 0.338 0.267 0.90 0.283 0.450 0.352

0.95 0.326 0.439 0.348 0.95 0.395 0.579 0.464

-0.50 0.087 0.1533 0.134 -0.50 0.098 0.174 0.157

-0.30 0.065 0.100 0.103 -0.30 0.075 0.112 0.120

AR(1)- 0.00 0068 0088 0.101 | AR(1)- 0.00 0.067 0.096 0.117
HET1 0.30 0.086 0.120 0.120 | HET1 0.30 0.091 0.128 0.136
qg=3 0.50 0.10 0.165 0.142 | q = 0.50 0.117 0.187 0.168
0.70 0.14 0.262 0.208 0.70 0.163 0.317 0.242

0.90 0.328 0.535 0.423 0.90 0.361 0.616 0.490

0.95 0.449 0.687 0.546 0.95 0.506 0.769 0.616

-0.50 0.073 0.080 0.078 -0.50 0.086 0.121 0.099

-0.30 0.064 0.077 0.069 -0.30 0.070 0.085 0.087

AR(1)- 000 0056 0.068 0.073 | AR(1)- 0.00 0.069 0.077 0.079
HET?2 0.30 0.068 0.086 0.082 | HET?2 0.30 0.077 0.097 0.094
g=1 0.50 0.085 0.108 0.096 | ¢ =2 0.50 0.089 0.130 0.116
0.70 0.100 0.151 0.122 0.70 0.119 0.203 0.163

0.90 0.203 0.305 0.234 0.90 0.257 0.421 0.318

0.95 0303 0.416 0.318 0.95 0.372 0.557 0.443
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Table 4.3: (Continued)
Model p F* QS QS- | Model p F* QS QS-

PW PW
-0.50 0.083 0.142 0.124 -0.50 0.087 0.160 0.136
-0.30 0.075 0.105 0.104 -0.30 0.079 0.115 0.117

AR(1)- 0.00 0.069 0.086 0.097 | AR(1)- 0.00 0.077 0.090 0.110
HET?2 0.30 0.079 0.114 0.114 | HET2 0.30 0.083 0.123 0.131

g=3 0.50 0.097 0.157 0.142 | ¢=4 0.50 0.101 0.196 0.170
0.70 0.139 0.258 0.202 0.70 0.169 0.310 0.246
0.90 0.311 0.529 0.406 0.90 0.351 0.610 0.489
0.95 0.443 0.671 0.548 095 0.505 0.753 0.624

Following Andrews (1991) and Andrews and Monahan (1992) we computed
type I error probabilities (they computed confidence interval coverage probabili-
ties) for tests of the hypothesis Hy : §5 = 0. We extend the results of Andrews
(1991) and Andrews and Monahan (1992) and also report results for tests of the
hypotheses: Ho : 8y =3 =0, Hy: 85 =83 =0,=0, Ho: B = B3 = B, =05 =
0. We label the hypotheses according to the number of restrictions being tested,
ie. ¢=1,2,3,4. The results for the AR(1) models with a sample size of T" = 128
are reported in Table 4.3. Asymptotic critical values for the 0.05 nominal level
were used.

Several patterns emerge from the table. First, in nearly every case, null re-
jection probabilities of F* are less distorted and closer to 0.05 than the Q@S or
QS-PW tests. The differences become larger as ¢ increases. Although the F~
test has less distortions, there are many cases in which null rejection probabilities
are much greater than 0.05. Nonetheless, the asymptotic approximation of the
distribution of F'* is substantially better compared to @S and QS-PW. Second, as
p approaches one, distortions of the null rejection probabilities increase for all the
statistics. This is explained by the fact that the stationary asymptotic approxi-

mation becomes less accurate the closer the autoregressive root is to one. Third,
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for all three statistics, as q increases, null rejection probabilities also increase indi-
cating the asymptotic approximation is less precise when testing joint hypotheses
compared to testing simple hypotheses. This result suggests, in particular, that
for joint hypotheses, size distortions of HAC estimator tests can be substantial
even when there is only modest serial correlation in the errors.

Results for the MA (1) models with T = 128 are given in Table 4.4. Asymptotic
critical values for the 0.05 nominal level were used. Similar patterns are seen as for
the AR(1) models except that distortions overall are much less severe. Rejection
probabilities of F* are rarely above 0.10 while those of QS and @QS-PW often
exceed 0.10 especially for large q.

In Table 4.5 we report results for the AR(1)-HOMO model for sample sizes T =
256, 512. Again asymptotic critical values for the 0.05 nominal level were used.
The table indicates that the asymptotic approximation improves substantially for
all the tests as T increases. For the most part, F™* has rejection probabilities close
to 0.05 for p < 0.5. For p > 0.5 rejection probabilities are inflated but by much
less compared to when T = 128. Rejection probabilities of QS and QS-PW are,
for the most part, more distorted than those of F™*, especially for p > 0.9 and

q = 3.

4.7 Finite Sample Power and Empirical Exam-
ple

Using the DGPs from the previous section, we simulated size-adjusted power of
the statistics and found that power rankings of the statistics followed patterns
qualitatively similar to the local asymptotic power curve depicted in Figure 4.2.

Therefore, we do not report those simulations here and instead report results on fi-
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Table 4.4: Finite Sample Null Rejection Probabilities MA(1) Models

Model 6 F~ QS QS | Model @ F~ QS Qs
PW PW

MA(1)- 0.30 0.072 0.074 0071 | MA(1)- 030 0.068 0.087 0.080
HOMO 0.50 0.073 0.084 0.074 | HOMO 0.50 0.074 0.100 0.081
g=1 0.70 0.073 0.089 0073|¢=2 070 0.078 0.109 0.082
0.99 0.073 0.090 0.073 0.99 0.078 0.112 0.083

MA(1)- 030 0.066 0.106 0.104 | MA(1)- 0.30 0.083 0.117 0.117
HOMO 0.50 0.074 0.124 0.105 | HOMO 0.50 0.090 0.135 0.124
g=3  0.70 0.080 0.134 0.102|¢g=4  0.70 0.093 0.160 0.124
0.99 0.082 0.139 0.101 0.99 0.094 0.164 0.118

MA(1)- 030 0.068 0.087 0082 MA(1)- 0.30 0.072 0.093 0.090
HET1  0.50 0.082 0.098 0.086| HET1I  0.50 0.074 0.103 0.089
g=1 070 0.083 0.102 0084|¢g=2 070 0.082 0.115 0.095
0.99 0.080 0.104 0.084 0.99 0.080 0.122 0.097

MA(1)- 0.30 0.080 0.118 0.117 | MA(1)- 030 0.086 0.112 G.122
HET1 0.50 0.085 0.132 0.119 | HET1 050 0.093 0.139 0.130
g=3 070 0.095 0.140 0.116|g¢g=4 070 0.095 0.151 0.130
0.99 0.095 0.146 0.116 0.99 0.093 0.158 0.130

MA(1)- 0.30 0.068 0084 008l | MA(1)- 0.30 0.073 0.088 0.089
HET2 050 0.077 0.096 0.084 | HET2 050 0.072 0.103 0.091
g=1 070 0082 0.098 0083| ¢=2 0.70 0.077 0.110 0.088
0.99 0.081 0.098 0.076 0.99 0.085 0.104 0.089

MA(1)- 030 0.078 0.102 0.105| MA(1)- 030 0077 0.119 0.126
HET2 0.50 0.077 0.122 0.115| HET2 0.50 0.082 0.142 0.138
g=3 070 0082 0.133 0.109| ¢=4 070 0.087 0.155 0.136
0.99 0.086 0.132 0.106 0.99 0.097 0.156 0.125
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Table 4.5: Finite Sample Null Rejection Probabilities AR(1)-HOMO Model

Model p F* QS QS- | Model »p Fr QS QS-
PW PwW

-0.50 0.050 0.069 0.059 -0.50 0.062 0.089 0.071

-0.30 0.051 0.068 0.061 -0.30 0.049 0.064 0.062
AR(1)- 000 0.044 0.057 0.058 | AR(1)- 0.00 0.053 0.053 0.056
HOMO 0.30 0.052 0.066 0.061 | HOMO 0.30 0.057 0.075 0.067
q=1 0.50 0.054 0.081 0.064 | q=2 0.50 0.070 0.095 0.077
T=256 0.70 0.067 0.101 0.078 | T=256 0.70 0.095 0.137 0.106
0.90 0.123 0.191 0.141 0.90 0.170 0.289 0.197

0.95 0.184 0.297 0.207 0.95 0.263 0.442 0.311

-0.50 0.063 0.104 0.080 -0.50 0.072 0.120 0.095

-0.30 0.048 0.075 0.071 -0.30 0.056 0.086 0.078
AR(1)- 0.00 0.052 0.060 0.064 | AR(1)- 0.00 0.057 0.064 0.068
HOMO 030 0.066 0.082 0.079 | HOMO 0.30 0.067 0.090 0.086
q=3 0.50 0.073 0.101 0.096 | q=4 0.50 0.084 0.132 0.106
T=256 0.70 0.160 0.173 0.125 | T=256 0.70 0.122 0.202 0.146
0.90 0.213 0.386 0.263 0.90 0.250 0.477 0.342

0.95 0.330 0.565 0.406 0.95 0.394 0.682 0.502

-0.50 0.062 0.070 0.057 -0.50 0.059 0.080 0.070

-0.30 0.058 0.060 0.053 -0.30 0.047 0.061 0.056
AR(1)- 0.00 0.055 0.054 0.056 | AR(1)- 0.00 0.047 0.053 0.056
HOMO 0.30 0.057 0.063 0.057 | HOMO 0.30 0.058 0.062 0.058
q=1 0.50 0.047 0.067 0.062 | q=2 0.50 0.058 0.073 0.060
T=512 0.70 0.064 0.081 0.064 | T=512 0.70 0.065 0.097 0.072
0.90 0.092 0.125 0.084 0.90 0.105 0.170 0.118

0.95 0.124 0.193 0.132 0.95 0.165 0.278 0.195

-0.50 0.057 0.087 0.073 -0.50 0.057 0.091 0.073

-0.30 0.049 0.070 0.067 -0.30 0.045 0.076 0.068
AR(1)- 0.00 0.045 0.061 0.060 | AR(1)- 0.00 0.060 0.063 0.066
HOMO 0.30 0.053 0.066 0.060 | HOMO 0.30 0.057 0.082 0.071
q=3 0.50 0.050 0.077 0.065 | g=4 0.50 0.054 0.089 0.071
T=512 0.70 0.068 0.104 0.077 | T=512 0.70 0.073 0.117 0.091
0.90 0.120 0.225 0.156 0.90 0.142 0.268 0.191

0.95 0.194 0.365 0.240 0.95 0.232 0.452 0.309
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nite sample power from simulations based on the following empirical example. Let
Alrev, denote the first difference of the natural logarithm of real aggregate restau-
rant revenues for the United States, and let Algdp, denote the first difference of
the natural logarithm of (seasonally adjusted) real gross domestic product (GDP)
for the United States. We obtained quarterly observations from 1971:1 to 1996:4
for the nominal versions of these series and constructed the real series by divid-
ing by the implicit GDP deflator. We seasonally adjusted the nominal restaurant
revenue series before constructing the real series. The restaurant revenue series
was obtained from the Current Business Reports published by the Bureau of the
Census, and the nominal GDP and deflator series were obtained from the Survey
of Current Business published by the Bureau of Economic Analysis, U.S. Depart-
ment of Commerce. The levels of the real revenue and real GDP series are clearly
trending over time and may have unit root errors. Therefore, the first differences
of the series are likely to be stationary and satisfy Assumptions 1 and 2, so we
consider a regression model in first differences of the data. For simplicity, we are
ignoring the possibility that the levels of the series are cointegrated.

Consider the regression
Alrev, = 8, + B>Algdp, + u,. (4.13)

In the notation of Section 4.2, 8 = (8%, 85)" and X, = (1, Algdp,)’. The parameter
B measures the change in the growth of real restaurant revenues with respect to
a unit increase in the real growth rate of GDP. Thus, §; measures the sensitivity
of real restaurant revenue growth to changes in real GDP growth. Since shocks to
the restaurant sector are likely to have little or no effect on GDP, it is reasonable to
think of Algdp, as an exogenous regressor. Therefore, OLS provides a consistent

estimate of f5.
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We estimated (4.13) by OLS and obtained 3, = 0.681. Thus, an increase
in the real growth rate of GDP by 1% results in a 0.681% increase in the real
growth rate of restaurant revenues. To measure the sampling variability of B'z,
we constructed the following 95% confidence intervals: @QS: (0.059, 1.302), QS-
PW: (-0.070, 1.431) and F* : (0.305, 1.056). Confidence intervals based on QS
and QS-PW were computed as B’Q + 1.96(Vae/T)z where Vi is the second di-
agonal element of V = (T~ S, X.X;) "' QT ! ST X X,)™! Q is the QS or
QS-PW HAC estimator respectively of §2, 1.96 is 97.5% critical value of a stan-
dard normal distribution, and T = 103. The confidence interval based on F™*
was computed as B’Q + 6.811(322/ T)% where Bss is the second diagonal element
of B = ('S, X.X) (T2, SS)T 1S XeX;)™" and 6.811 is the
97.5% asymptotic critical value taken from Table 4.1. Interestingly, the tightest
confidence interval is obtained using F*, and there are nontrivial differences in
the HAC based confidence intervals whether or not prewhitening is used. This
empirical example suggests a situation where power of the F™* statistic may be
greater than power of HAC estimator tests and illustrates the sensitivity of infer-
ence to the way HAC estimators are constructed (see Den Hann and Levin (1997)
for additional evidence on the latter).

To investigate the possibility that F* is more powerful in the empirical ex-
ample, we conducted the following simulation experiment. We fit a variety of
ARMA models to the OLS residuals from (13) and found that an AR(4) model
provided a good fit. We also fit a variety of ARMA models to Algdp; and found
that an AR(1) and an ARMA(4,1) model provided good fits. We performed
three power simulations using 2,000 replications and 7' = 103. We generated

data according the model y, = Boz: + u, with u, = —0.3429%y,_; — 0.3301u,—2 —
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0.2686wu,_3 + 0.5947u;_4 + €, € ~ i.i.d N(0,0.0197). We generated z; using three
DGPs: DGP(1): z, equal to the actual first differenced quarterly real GDP data
(ze = Algdp:), DGP(2): z, = 0.3249x;_, +&,, £, ~ i.i.d N(0,0.0089) and DGP(3):
z, = 0.9952z, ; — 0.1446z,_5 + 0.0411z,_3 — 0.1465z,_4 + &, — 0.7410¢,_,, &, ~
i.i.d N(0,0.0089). The null hypotheses was Hy : 85 = 0.
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Figure 4.4: Finite Sample Power, T=103., 5% Nominal Size.
ve = B, + Baxy + up. Hg 82=0. ug ~ AR(4). x¢ ~ AR(1).

H.0 0.1
o
(@]
N
o
i
o
1)

o
o -~ ——:"’__——"
] =7 -
(e} g ”,
<D”_ 7 /’
”
(] ///
~
of Vot
7
g_ /s
— Ve
G;tﬂ_ ///
o ° /
[al
! /
/7
- 7/
-} Ve ‘
o v/ — QS !
. Z - |
Sf e/ - QS-PW |
_ / -- F* ;
d' /// |
-._:.’/
o . . . R .
.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
B2

Figure 4.5: Finite Sample Power, T=103, 5% Nominal Size.
Yt = 61 + 62Xt + U‘t' HO ,82:0. ut ~ AR(4). }‘:': ~ ARL\«[A(‘L.I)

39

Reproduced with permission ofithe:copyright owner. Further reproduction proﬂ{bited without pe{iRiRsSiARNnaraa.com



60

Table 4.6: Finite Sample Size

B, F* QS QSPW
DGP(1) 0.00 0.026 0.005 0.002
DGP(2) 0.00 0.044 0.038 0.030
DGP(3) 0.00 0.044 0.030 0.023

We computed finite sample null rejection probabilities of the statistics using
5% asymptotic critical values which we report in Table 4.6. Regardless of the DGP
used for z;, rejection probabilities of all the statistics are below 0.05 with those of
QS and QS-PW below that of F**. Rejection probabilities of @S and QS-PW are
quite low when the actual GDP data is used (DGP(1)) which explains the wide
confidence intervals using QS and QS-PW in the empirical example. Because the
tests are all conservative, it makes sense to compare power functions computed
using the asymptotic critical values (this mimics the way the tests are used in
practice). We simulated power for 85 = 0.1, 0.2, ..., 1.9, 2.0. The resulting finite
sample power curves are plotted in Figures 4.5, 4.6 and 4.7 corresponding to the
three DGPs for z,.. In Figure 4.5 we see that F** dominates the HAC estimator
tests in terms of power when actual GDP data is used for z,. This is not an
atypical example as real GDP is commonly used in empirical work. In the other
cases where z, is modeled as an ARMA process, the power ranking depends on
how far 35 is from zero.

We conclude this section with an example which illustrates the sensitivity of
HAC estimator tests to projections of subsets of regressors in OLS regressions.
Using the same data set as above, we regressed the level of nominal aggregate
restaurant revenue on a constant, a time trend, and the level of nominal GDP and
obtained the following 95% confidence intervals for the estimate of the coefficient

on nominal GDP: QS: (1.077, 1.321), QS-PW: (1.040, 1.358), F* : (1.031, 1.366).
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(Because the nominal series almost certainly have unit root errors, this example
does not satisfy Assumptions 1 and 2. It is illustrative nonetheless). We also
detrended the data and regressed the detrended revenue series on the detrended
constant and detrended GDP (we projected out the time trend). The OLS esti-
mate of the GDP coefficient and F'* are invariant to the method of estimation by
the FWL Theorem. Therefore, confidence intervals based on F* are the same in
the two cases. Confidence intervals based on QS and QS-PW are not invariant
which is illustrated by confidence intervals based on the detrended regression: @S-
(1.069, 1.329), QS-PW: (0.795, 1.603). This lack of invariance arises from using
an automatic bandwidth and/or pre-whitening and illustrates a pitfall when using

HAC estimator tests.

4.8 Conclusions

In this chapter we propose new test statistics for testing hypotheses in regression
models with serial correlation/heteroskedasticity of unknown form. The novel
aspect of the new tests is that they are simple to compute and do not require
spectral density (HAC) estimators. Our approach is to eliminate nuisance pa-
rameters asymptotically with a simple stochastic transformation of the parame-
ter estimates. Since there are many conceivable transformations that will yield
asymptotic pivotal statistics, our approach creates a new class of test statistics
which are pivotal and robust to heteroskedasticity and serial correlation in the
errors. An open research problem is to develop a theory of optimality for this
new class of tests. We derived the limiting null distributions of the new tests and
showed that while they have nonstandard distributions, the distributions only de-

pend on the number of restrictions being tested and critical values were easily
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simulated. Our results easily extend to GLS and IV estimation, and we conjec-
ture that our approach can be extended to the GMM framework. A simulation
experiment showed that the asymptotic approximation of the new test is better
(nearly uniformly) than that of more standard HAC estimator tests. But, like
HAC estimator tests, the new tests suffer from serious size distortions (although
less so) if the data has highly persistent serial correlaﬁion and is close to being
nonstationary. This is a common problem in time series models when the true
form of serial correlatién is unknown. Finally, the new tests retain respectable
power, and we provide a relevant empirical example where finite sample power
of our test dominates finite sample power of HAC estimator tests. Given that
new tests compare favorably to HAC methods in finite samples and are simpler
to compute, they should become serious competitors to HAC estimator tests in

practice.
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Chapter 5

Simple Robust Testing of
Hypotheses in Non-Linear
Models

5.1 Introduction

It is a well known result that in models with autocorrelation/heteroskedasticity
of unknown form, standard estimators remain consistent and are asymptotically
normally distributed under weak regularity conditions. However, the usual results
required for testing hypotheses in the usual manner no longer holds. In this
chapter we develop new hypothesis tests in weighted, nonlinear regression models
with serial correlation/heteroskedasticity of unknown form. Included in this class
of models are non-linear GLS, [V-estimation in nonlinear models, and some Quasi-
likelihood models.

When the entire covariance structure is known, the model can be transformed
and standard testing results can be obtained using GLS methods. This is usually
not possible in practice, as the serial correlation or heteroskedasticity encoun-
tered is frequently of unknown form. To obtain valid testing procedures, the most
common approach in the literature to date has been to estimate the variance-
covariance matrix of the parameter estimate. This is usually done nonparametri-

cally, using spectral methods which lead to heteroskedasticity and autocorrelation
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consistent (HAC) estimators. Using these estimators, standard tests are con-
structed based on the asymptotical normal distribution of the of the weighted
NLS estimator. HAC estimators and their properties have recently attracted a lot
of attention in the literature. Among the important contributions are Andrews
(1991), Andrews and Monahan (1992), Gallant (1987), Hansen (1992), Newey and
West (1987), Robinson (1991) and White (1984). The direct contribution of this
literature has been the construction of asymptotically valid tests that are robust
to serial correlation/heteroskedasticity of unknown form.

The main limitation of the HAC approach is that, while the variance-covariance
matrix is estimated, the resulting variation in finite samples is not taken into
account. Asymptotically, this clearly is not a problem; in fact, once the variance-
covariance matrix has been estimated, it can be assumed to be known. In finite
samples, however, this can cause substantial size distortions. In this chapter,
we develop an alternative method of creating hypothesis tests that are robust to
serial correlation or heteroskedasticity of unknown form, and which do not require
a direct estimate of the variance-covariance matrix.

The approach we take is similar to Fisher’s classic construction of the ¢ test. A
data-dependent transformation is applied to the NLS estimates of the parameters
of interest. This transformation is chosen such that it ensures that the asymptotic
distribution of the transformed estimator does not depend on nuisance parame-
ters. The transformed estimator can then be used to construct a test for general
hypotheses on the parameters of interest. The asymptotic distribution of the re-
sulting test statistic turns out to be symmetric, but with fatter tails than the
normal distribution; it is not normal, but has the form of a scale mixture of nor-

mals. Furthermore, it depends only on the number of restrictions that are being
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tested. We are therefore able to tabulate the critical values in the usual manner;
as a function of the number of restrictions and the level of the test.

We provide an empirical example illustrating this new test statistic. Specif-
ically, we examine the effect of GDP growth on the growth of total restaurant
revenues. We use quarterly data over 26 years for the analysis, and there is rea-
son to suspect the presence of autocorrelation and heteroskedasticity. We do not,
however, have any knowledge of the specific forms of autocorrelation and het-
eroskedasticity we may encounter in this data set, hence making it an excellent
candidate for the application of both the HAC estimators and the newly intro-
duced test statistic.

We estimate the long-run relationship between growth of restaurant revenues
and growth of GDP using our method and the HAC estimator with and without
prewhitening (as introduced by Andrews and Monahan, 1992). We then perform
simulations, confirming that the size of our test is less distorted than that of
the tests currently in use. We also examine finite sample power for the different
methods, and find that power of our test can dominate HAC estimator tests.

The rest of the chapter is organized as follows. In section 5.2, we introduce
the model and prove basic asymptotic results. In section 5.3, we develop the test
_statistic, first for simple, 1-dimensional hypotheses and then for general, non-linear
hypotheses. In section 5.4, we describe the empirical example and the simulation

based on it. Section 5.5 concludes. Some proofs are included in Appendix C.

5.2 The Model and Some Asymptotic Results

Consider the nonlinear regression model given by

ye=f(X,8)+w=[fc(B)+u; t=1,.,T, (5.1)
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where f denotes the nonlinear function of regressors and parameters. [ is a
(k x 1) vector of parameters and X, is a (k2 x 1) vector of exogenous variables
and conditional on X, u; is a mean zero random process. We assume that u; does
not have a unit root, but u, may be serially correlated or heteroskedastic. At

times, it will be useful to stack the equations in (5.1) and rewrite it as
y=£(B8) +u (5.2)

We will use weighted non-linear least squares to obtain an estimate of 3. The

estimate, B, is defined as
B =argmin (y — £ (8))' W (y — £ (8)) (5.3)

where W is a symmetric, positive definite T'—dimensional weighting matrix. De-
pending on the choice of W, the following are examples of estimation techniques

covered by this framework:

Example 1: Nonlinear Least Squares.

If we let W be the identity matrix, (5.3) takes the well-known form
B =argmin (y —£(8)) (y — £ (8))
This is the case of standard, non-linear least squares.

Example 2: Non-linear IV estimation, Lagged Dependent Variables.
If we have a model corresponding to (5.2), and a T x [ matrix of instru-
ments Z, [ > k, with the matrix projecting onto the space spanned by the

instruments defined as Pz = Z(Z2'Z )_1 Z', the IV estimator takes the form

By =argmin(y — £ (8)) Pz (y — £ (8))
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corresponding to W = Pz.
A special case of this is models including lagged dependent variables Here

we are interested in a model
Y =XB+ Y2l + U, (5.4)

where Y, is a matrix containing lagged values of Y and § and I' are pa-
rameters. If we let A = [X, Y2] and § = (B, T')’, we can rewrite (5.4)

as
Y =46 +U.

Using the method of instrumental variables with instruments Z, the estimate

of § is defined as
5= arg min (Y — A8) Pz (Y — A6) (5.5)

where P; = Z(2'Z)"' Z'. Comparing (5.5) and (5.3), we see that 6 is the

weighted least squares estimator in a model with weighting matrix Pz.

These examples illustrate that several well-known models and estimation tech-

niques are special cases of the framework we use.

In developing the results, we also work with the following transformed model
Wiy = Wif (8) + Wiu
or, simplifying the notation
g=£(0) +u (5.6)

where §,, f; and @, are defined in the natural way. The following additional

notation is used throughout the chapter. Let F,(B) : k x 1 denote the derivative
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of f;(B) with respect to § and F (B) the derivative of f (8) with respect to B.
In addition, let v, = F, (8) @ and define Q = AA’ = [o + 332, (T; + Ij) where
I'; = E(vv.—;)- For later use, note that  is equal to 27 times the spectral
density matrix of v, evaluated at frequency zero. Define S; = Z;=1 v; and let
Wi (r) denote a k-vector of independent Wiener precesses, and let [rT] denote
the integer part of rT, where r € [0,1]. We let B, denote the true value of the
parameter 8. We use = to denote weak convergence.

The following two assumptions will be sufficient to obtain the main results of the

chapter.

Assumption 3 plim [T"I EE":TII E.(B,) F! (ﬁo)] = rQ, where Q is invertible.
Assumption 4 T'%S[TT] = T2 ZE’Z‘ F, (Bo) i = T2 E;T;] ve = AWi ().

Assumption 3 rules out trends in the linearized regression function of the trans-
formed model, but not necessarily in the X, process. Note that Assumption 3 im-
plies the standard assumption, namely plim[%F’ (8,) WF (B,)] = Q. Assumption
4 states that a functional central limit theorem holds for the sequence {v.} . This
is the case, for example, if v, is weakly stationary, the elements of v; have a finite
moment greater that 2 and {w,} and {X.} satisfy well-known mixing conditions.
One set of conditions under which Assumption 4 holds can be found in Phillips
and Durlauf (1986).

Using Assumptions 3 and 4, we can obtain the well known asymptotic distri-

bution of B :

VT (B -6) = Q'AW: (1) ~ N (0,Q7'ANQ™) =N (0. Q7IQ!) = N (0,V).
(5.7)
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For the derivation of (5.7) see Davidson MacKinnon (1993). We see that the
asymptotic distribution of 3 is a k-variate normal distribution with mean 3 and
variance covariance matrix V = Q@ 'QQ™!. The asymptotic distribution of B can
now be used to test hypothesis on 8. To do this, an estimate of V' (and therefore
Q! and Q) is required. A natural estimate of Q7' is [%F’ (B) WF (,B)]—l
Q can be estimated by a HAC estimator, Q. Letting ., be the residuals of the
transformed mddel, the HAC estimate would utilize 9, = F, (B) 1, to estimate
nonparametrically the spectral density of v, at frequency zero, and hence Q. To test
hypotheses on 3 using V= [%F’ (B) WF (B)] - Q [% z;‘;l F' (B) WF (B)] - ,
transform T (B — 50) to obtain

V-iVT (3 - 50) = Q3QQ AW (1) = Wi (1) ~ N (0,Lc) . (5.8)

Using (5.8), hypotheses can be tested in the usual manner with a ¢-test.

To test hypotheses on 3, we use a method that is similar; we also transform
VT (ﬁ — ﬁ0> in such a manner that the asymptotic distribution no longer depends
on unknown parameters. The essential difference between the two approaches
is that our approach does not require an explicit estimate of {2 and takes the
additional sampling variation associated with not knowing the covariance matrix
into account. HAC estimates, on the other hand, treat the variance-covariance
matrix as known asymptotically.

We now proceed to obtain the relevant transformation. Consider T‘%S{rn =
T-3 [TT] By =T"2 Z[TTI ( ) 3) 4. In Appendix C, we prove the following lemma:

Lemma 1

[rT} [rT} [rT}

T3 =Ty o=T Y F(B)a=T"3 F(fo) i+l
rot=1 t=1 t=1
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where li,7y is a residual term, with the property that
p&'m (l[rTl) =0

We now use the asymptotic distribution of B, specified in (5.7) together with

Assumptions 3 and 4, to determine the asymptotic distribution of T2 S'{rTl.

[rT}
T~2S,n = T-%Zmao)ﬁm[rn

= T2 [{EFt (Bo) [ft (Bo) + e — fe (ﬁ)] +
[rT] [T}

= Ty A ﬁo)ue+T“ZFc(ﬁo)[ fe (Bo) = fu (B)] + tem

Using a Taylor expansion of f;(3) around G, we see F(B) = fi (Bo) + F! (Bo) (8-
Bo) + lt, where [, represents the higher order terms of the expansion. From the
assumptions at the beginning of this section, it is clear that I, is Op (T™!) ; hence
T3 ZE;Tll F, (B,) 1, will be Op (T“%), implying that the term can be ignored.

This allows us to write

[rT}]

T4y = THSem = T4 3 F(00) [F (8o) (6~ 50) + L) +lpr (59)

[T}
= T‘%Sm—r[ > Fi(80) F’(ﬁo)} 74 (B8~ 85)]| +o0r (1)
= AI’V]C (T‘) — TQ [Q—.IAI’V;c (1)] = ZX(W;C (T‘) — T'I’Vk(l))

Note that (Wi (r) — rWi (1)) is a k-dimensional Brownian Bridge.
Now consider ¢ = T2 Zz;l 5,5, From (5.9) and the continuous mapping

theorem, it follows that

- 3 [rig) s
t=1

1
= A/(; (Wk (’I’) - T‘[’Vk (1)) (LVk (T‘) - T"Vk (1)), dri’.
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Define P, = j; (Wi (r) — rWi (1)) (Wi (1) — rWi (1)) dr. The asymptotic distri-
bution of C can be written as AP.A’. We have now obtained a matrix whose
asymptotic distribution is a quadratic form in A. In what follows, this will enable
us to make a transformation eliminating A from the asymptotic distribution of
the test statistic.

To that end, note that because P is constructed as the integral of the outer
product of a k-dimensional Brownian Bridge, it is positive definite. This permits
us to use the Cholesky decomposition to write Pr = Z¢Z;.

To eliminate Q from the asymptotic distribution as well, we now turn our at-
tention to the following matrix
B =4 (8) wF (B)] e (17 (B) wF (B)] "' Now define
M = [%F’ (B) WFE (B)]_l C3, where Cz is the Cholesky decomposition of C.
Therefore, MM’ = B. Note that since B = Q 'APAN'Q™!, M = Q 'AZ,. We are
now ready to examine a transformation of vT (B — [3) , namely M~'\/T (B — B) .

MWT (B-8) = [QAZd ™ Q7AW (1) = Z7' Wi (1) . (5.10)

The limiting distribution given by (5.10) does not depend on the nuisance param-
eters Q and . It is trivial to show that W} (1) and P_ ! are independent, so condi-
tional on Zx, M~ VT (B - ﬁ) is distributed as N (0, P ') . If we denote the den-
sity function of P: by p (P:), the unconditional distribution of M-YT (B — ﬁ)
is fol N (0, P{*) p (Px) dPx. This is a mixture of normals, which is symmetric, but
has thicker tails than the normal distribution. It is important to note that M is
easy to compute from data.

The above derivation is similar to of Fisher’s classical development of the
t-statistic. Fisher utilized a data dependent transformation to avoid unknown

variance parameters and obtained a distribution with fatter tails than the normal
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distribution. Although our approach is similar, note that we do not obtain the
finite sample distribution of our teststatistic, and that Z "Wk (1) is not a mul-
tivariate ¢ distribution. In what follows, we will use the distribution obtained in

(5.10) to develop tests for hypotheses on 3.

5.3 Tests for General Hypotheses

We will now construct the relevant test statistic for simple hypotheses on the §s.
In order to construct a test statistic ¢* for hypotheses about the individual G’s,
we let the square root of the diagonal elements of T' B~! assume the role of the
usual standard errors, L.e. t* = (B, - ﬁi) / (T "BE 1)%. Because the t* statistic
is invariant to the ordering of the individual B’s, its asymptotic distribution is
given by the first element in the vector Z; 'Wj (1) . Making use of the fact that

Z:! is lower triangular, it is straightforward to show that

1

£ = W (1) Uol (W, (r) — W, (1))%#} o w (PR

(MBS

The critical values of W (1) P, 2 are easy to simulate and are tabulated in
Table 4.1. We now consider more general hypotheses in this framework.
We are interested in testing general non-linear hypotheses. We examine hy-

potheses of the form
Hoir(ﬁ0)=0, ler(ﬁo)#o,

where r(-) : R¥ — R? imposes ¢ restrictions on the parameter vector B. We
restrict our attention to hypotheses where r (-) is twice continuously differentiable
with bounded second derivatives near G, and R (-) = a—%—,r (-) has full rank ¢ in
a neighborhood around [y, implying that there are genuinely g restrictions. For

later use, we let R=R (B) and Ro = R(B,) -
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We wish to obtain a test using the result from the previous section that the
asymptotic distribution of M™\Ts (B — ﬁo) does not depend on any of the nui-

sance parameters.

The relevant test statistic is analogous to the standard Wald statistic for non-
linear models. We simply substitute B for the standard variance-covariance matrix

to obtain
N’ F a1 -

F*=Tr (ﬁ) [RBR'] r (,6) /q.

The asymptotic distribution of F* follows from the fact that
./ R e
Fro= T [R(6-6)] [aBR| " [2(B- Bo)| /a+ 0 (T7)
= [RoQ AW (1)] [RoQ'ARN Q™ R ™" [RoQ ™" AWL (1)] /g

But since RoQ !A has rank ¢ and Wi (1) is a vector of independent Wiener
processes that are Gaussian, we can rewrite RoQ'AW (1) as AWy (1), where
Wy (1) is a g—dimensional vector of independent Wiener processes, and A* is the
g X g matrix square root of RoQ 'AA'Q~'Rj. Using the same arguments, it is
then possible to establish that

RoQ 'APANQ 'Ry = AP, (A™).
and we therefore obtain the asymptotic distribution of F* as follows:

Fr o= [Awr ) [AP ()] (AW, ()] /a
= W (1) Pq‘1W; (1) /q.

We provide a fully detailed proof in Appendix C, and the following theorem for-

mally states the result.

Theorem 11 : Suppose that Assumptions 8 and 4 hold. Then under the null
hypothesis Ho : 7 (8) =0, F* = W, (1) P;'W,(1) /q as T — oo.
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We have in this manner constructed a test for general nonlinear hypotheses
on the parameters in a broad class of non-linear models, whose asymptotic dis-
tribution depends only on the number of restrictions. Table 4.2 tabulates the

asymptotic critical values.

5.4 Empirical Illustration

In this section we illustrate the theoretical results with an empirical example. We
wish to examine the effects of GDP growth on the growth of aggregate restaurant
revenues. We let ARR denote the first difference of the natural logarithm of
real, seasonally adjusted aggregate restaurant revenues for the United States, and
AGDP denote the first difference of the natural logarithm of real, seasonally
adjusted gross domestic product (GDP). Initially, we consider the basic regression

model
ARR =, + B,- AGDP +u, (5.11)

where 3, is an intercept term, while 3, is the parameter measuring the long run
effect of GDP growth on restaurant revenues. It is unreasonable to think that the
error term of this regression is i.i.d, so both HAC estimator tests and the method
of testing introduced in this chapter are relevant methods of testing. To eliminate
some of the autocorrelation in the error structure, we consider an AR(1) guess
GLS transformation of the model. The idea is to "soak” up some of the auto
correlation using the AR(1) transformation and then use HAC robust test to deal

with any remaining autocorrelation in the model. Therefore, consider the model:

ARR, — p-ARR.. = B,(1—p)+By- (AGDP. — p- AGDP;_1) +u, {3212)

(1= ARR, = (1—p)2 B, +(1- 4% B, - AGDP +u

Il

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



75

Table 5.1: Confidence Intervals

B, P t* t — HAC |t— HAC — PW
Model (5.11) || 0.681 [0.31;1.06] | [0.06;1.30] | [—0.07;1.43]
Model (5.12) || 0.694 | —0.293 | [0.39;1.00] | [0.18;1.20 [0.20; 1.19]

where ARR,_; and AGDP,_, are lagged values of first differences of real log-
restaurant revenue and real log-GDP respectively. We estimate model (5.12) by
non linear least squares, utilizing a grid search over values of p.

For both series, we use quarterly data from 1971 through 1996. The restaurant
revenues are total for all sectors and the source is Current Business Reports,
published by the Bureau of the Census. The GDP series and the GDP inflator
were obtained from the Survey of Current Business published by the Bureau of
Economic analysis, US Department of Commerce. The GDP series is nominal
and seasonally adjusted, and we use the GDP deflator to obtain real GDP. We
adjust the restaurant revenue data for seasonal flunctuations and again use the
GDP deflator to obtain the real series. We are interested in the long-run effect of
GDP growth on the growth of restaurant revenues (8,). We compute confidence
intervals using our ¢* and HAC estimator test. We implement the HAC estimators
as recommended by Andrews (1991) which uses the quadratic spectral kernel, and
also with VAR(1) prewhitening as suggested by Andrews and Monahan (1992).
The following table summarizes the results: We see that the different methods of
calculating confidence intervals result in different intervals, and that our method
provides a much tighter confidence interval than the two methods using HAC
estimators. Using this empirical example as relevant data generating processes, we
compare finite sample size and power of these different methods, using simulations.
To this end, we fit the residuals from (5.11) to several different ARMA models

and find that an AR(4) model provides a good fit. We also fit AGDP to several

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



76

ARMA processes and find that an AR(1) model renders a good fit. To perform the
simulations, we generate data according to the two models. Model 1 is as follows:
ARR, = f3,- AGDP,; + u;,ue = —0.343u;_; — 0.330u;—2 — 0.269u,_3 + 0.595u; 4 +
£, & ~ N(0,0.0367746) and AGDP, are the original regressors. In model 2,
we simulate the regressors, and the model becomes: ARR, = B, - AGDP, +
g, U = —0.343u,_; — 0.330wu,_» — 0.269u; 3 +0.595u,_s +§;, § ~ NV (0, 0.0367746)
and AGDP, = —021 - AGDP;_1 + (,, ¢; ~ N (0,0.007888) . We generate data
using B, = .0,0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2. We calculate finite sample size
and power and asymptotic power for testing 3, = 0. In all cases we use 2,000
replications.

The results are summarized in Table 5.2. We see that our method generally
dominates the HAC estimators with respect to size. There is significantly less
distortion. Size adjusted power is always bigger for the our method at very small
values of 3,, but dominated by the HAC method, followed by the pre-whitened
HAC at larger values. The same pattern hold for asymptotic power, when using
the simulated regressors. When using the original regressor, however, The t*
achieves both better size and uniformly better power than the tests using HAC

estimators.

5.5 Conclusion

In this chapter, we have developed a test statistic to test possibly non-linear hy-
potheses in nonlinear, weighted regression models with serial

correlation/heteroskedasticity of unknown form. These tests are simple and do
not require use of heteroskedasticity autocorrelation consistent (HAC) estimators.

We derive the limiting null distributions of these new tests in a general nonlin-
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Table 5.2: Simulation Results

Finite Sample Size Finite Sample Size

and Power and Asymptotic Power
Error 3, t* HAC HAC t* HAC HAC
Model* PwW PW

1 0.0 || 0.028 0.006 0.005 | 0.028 0.006 0.005
0.2 {{ 0.158 0.177 0.174 || 0.101 0.039  0.028
0.4 || 0.429 0.504 0.502 | 0.339 0.187 0.155
06| 0.744 0813 0.806 | 0.652 0473 0.407
0.8 | 0.925 0.961 0.954 || 0.871 0.750  0.690
1.0 || 0.978 0.993 0.992 || 0.957 0.911 0.874
1.2 | 0.994 1.000 0.999 || 0.988 0.979  0.958
1.4 | 1.000 1.000 1.000 || 0.996 0.995 0.985
1.6 || 1.000 1.000 1.000 || 1.000 1.600 0.995
1.8 | 1.000 1.000 1.000 || 1.000 1.000 0.998
2.0 || 1.000 1.000 1.000 | 1.000 1.000 1.000

2 0.0 | 0.046 0.031 0.027 || 0.046 0.031  0.027
0.2 || 0.108 0.106 0.107 | 0.098 0.070  0.059
04| 0252 0.289 0.286 | 0.233 0.223 0.203
0.6 | 0.449 0.542 0.536 || 0.423 0.459  0.432
0.8 || 0.628 0.739 0.732 || 0.607 0.678  0.657
1.0 || 0.768 0.872 0.867 || 0.753 0.833  0.815
1.2 || 0.867 0.941 0.944 || 0.854 0.916 0.908
1.4 0.924 0.976 0.977 | 0.913 0.963  0.959
1.6 0.954 0.990 0.992 || 0.947 0.985 0.983
1.8 0.972 0.997 0.997 || 0.967 0.995 0.994
2.0 0.980 0.998 0.998 || 0.977 0.997 0.997
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ear setting, and show that while the tests have nonstandard distributions, the
distributions depend only upon the number of restrictions.

The test presented in this chapter introduces a new class of tests, utilizing
stochastic transformations, some of which can be used in situation with autocor-
relation/heteroskedasticity of unknown form in the errors. While the selection of
the specific statistic within this class is somewhat arbitrary, its properties with
respect to invariance to nuisance parameters, and very little size distortion are
highly desirable. Future work in this area should examine this class of statistics
more closely in order to compare different statistics within this class of statistics.

We apply this method of testing to an empirical example and illustrate that the
size of the new test is less distorted than tests utilizing the HAC estimators. The
lesser size distortion of the newly introduced test makes it an attractive alternative

to the currently used HAC test.
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Chapter 6

Robust Inference in Models of
Cointegration

6.1 Introduction

In empirical analysis of economic phenomena, economic theory often dictates the
presence of both parameters that are of interest to the economist, and those that
are not, called nuisance parameters. While statistical inference is drawn only
on the parameters of interest (separate inference), the treatment accorded by the
investigator to the nuisance parameters can significantly affect the results. In fact,
the ability to conduct inference may be impaired even when consistent estimates
of the parameters of interest can be obtained. This chapter proposes a way of
dealing with this problem within the context of a specific environment.

The particular setup explored here is one where time series data are generated
by unit root processes and the variables of interest captured by these data series
show co-movement over the entire length of the time horizon considered. In such
environments! it is well-known that the ability of the economist to conduct proper
statistical inference is impaired by the all-too-common presence of heteroskedas-
ticity and serial correlation. The parameters describing the specific form of the

heteroskedasticity and serial correlation are often deemed as nuisance parameters

IExamples of such environments are frequently encountered in the macroeconomics and the
asset-pricing literatures.

79

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



80

in this context. This chapter suggests a way of conducting proper statistical in-
ference on the parameters of interest without having to directly estimate these
nuisance parameters.

More specifically, let y be a unit root process, f (¢) a trend function, and X
a set of regressors that also contain unit roots. A subcase of this model, which
is also treated in this chapter, is the case with no regressors, i.e., y is trend-
stationary. For models with regressors included, assume that there is exactly one
cointegrating relationship such that the model can be represented as a standard
univariate regression model with stationary error terms.? Furthermore assume
that X is “exogenous” with respect to the cointegrating vector of parameters (the
parameters of interest). This chapter proposes a new test statistic for testing
hypotheses in models which fit the above description.

The development of the new test relies upon a data-dependent transforma-
tion of the ordinary least squares estimates of the parameters. The asymptotic
distribution of the transformed estimates depends only on the parameters of the
cointegrating vector, and therefore a test statistic which is invariant to the specific
form of the correlation structure (the nuisance parameters) can be obtained.

To evaluate the finite sample performance of the new test, simulation experi-
ments are performed. These simulations are repeated for tests currently employed
in the literature, thus providing a basis for comparison. It is shown that in gen-
eral, size distortions are much less severe than those of tests currently employ=d
in the literature and the size-adjusted power of the new test is only marginally
lower than that of tests currently employed.

Even though the size distortions of the new test are generally less than those

2The model introduced in this paper is designed primarily for the analysis of the long term
relationship between integrated variables.
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of tests currently employed in the literature, size remains inflated when serial
correlation is high. A way of correcting this problem is provided for the model
with a constant, a linear trend, and no regressors. Simulations confirm that the
correction alleviates the problem of inflated size.

In order to place the new test statistic in perspective, it seems appropriate at
this stage to describe ways in which the literature currently tackles the presence
of heteroskedasticity and autocorrelation of unknown form in the type of models
that are the focus of this chapter. In this connection, two very different frame-
works stand out: the single equation framework, which forms the basis of this
chapter, and the systems framework. The standard approach used to deal with
heteroskedasticity and serial correlation in single equation models with exogenous
regressors is to estimate the correlation structure of the error terms using non-
parametric heteroskedasticity and autocorrelation consistent (HAC) estimators.?
These estimators furnish consistent estimates of the correlation structure. Using
these estimates, inference on the cointegrating vector is carried out using con-
ventional tests. Specifically, after the covariance matrix has been estimated, it is
treated as if it is known, and testing proceeds from there. Inference conducted in
this manner is robust to heteroskedasticity and serial correlation of unknown form.
Even though tests that use HAC estimators are valid asymptotically, they may
potentially display substantial size distortions. Simulation studies that document
these size distortions have been carried out for stationary models, see for example,
Andrews (1991), Andrews and Monahan (1992) and Den Haan and Levin (1997).
The fact that the estimation of the correlation structure causes size distortions

carries with it the implication that there may be significant benefits from circum-

3HAC estimators have been thoroughly examined in the literature. Among the major con-
tributions are Andrews [1991], Andrews and Monahan {1992], Hansen [1992b], Newey and West
[1987], Robinson [1991] and White [1984].
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venting this procedure. The test proposed here achieves exactly that. In fact,
the distinctive feature of the test developed in this chapter is that even though it
does not require estimation of the correlation structure, it is still robust to serial
correlation of unknown form.

In the general literature on estimation and testing in cointegrating systems,
a commonly used method is the full information maximum likelihood (FIML)
approach developed in Johansen (1988, 1991) and Johansen and Juselius (1990,
1992).% A discussion and comparison seems warranted here even though the pro-
cedure outlined in these chapters is tailored for models that are somewhat different
from those within the scope of this chapter. The FIML approach models multi-
variate structural models, and is therefore very flexible in the sense that it allows
the empiricist to test for the number of cointegrating relationships, without re-
quiring exogeneity of any kind. It estimates the correlation structure as part of
the maximum likelihood estimation, and is therefore robust to heteroskedasticity
and serial correlation. Johansen’s method does however require the researcher to
express the model as a VAR model for which a lag length must be chosen. While
modeling the cointegration relationship as a VAR model is useful for examining
the short term dynamics and while inference conducted on such a model is robust
to heteroskedasticity and serial correlation, it is clear that the choice of lag length
will influence the results.® The test statistic developed in this chapter circumvents
the issue of lag length choice; as such it may be viewed as an alternative to the

- Johansen approach when dealing with single equation models.
The rest of the chapter is organized as follows. In Section 6.2 the model is

described in detail, the required assumptions are stated, and some of the basic

11t should be noted that this approach can also be used to estimate single equation models.
S5For a recent application of Johansen’s method in which the choice of lag length matters for
inference, see Metin [1998].
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asymptotic results are presented. In Section 6.3, the test statistic is derived and
the asymptotic distribution thereof stated. In Section 6.4, the results of the finite
sample simulation experiments are reported. Section 6.5 explores the cause of
the inflated size when serial correlation is high and implements a size correction
procedure for one specific model. Section 6.6 concludes. Proofs of important

results are collected in Appendix D.

6.2 The Model Setup

Consider the following regression model containing a single cointegrating relation-
ship:
p=ft)a+XB+u, t=1,.,T

(6.1)
Xe =X+ vy,

where f (t) denotes a (k; x 1) vector of trend functions, X, a (k x 1) vector of re-
gressors® and o and 3 are (k; x 1) and (k x 1) vectors of parameters respectively.
The following assumptions will be maintained throughout the chapter. Condi-
tional on X, u; is a scalar, mean zero random process. The sequences {u.;} and
{v:} do not have unit roots, but may exhibit serial correlation or heteroskedastic-
ity. Furthermore, it is assumed that the cross-spectral density of {u.} and {v.} is
zero at frequency zero. This implies that the regressors are strictly exogenous in
the sense of Phillips and Park (1988).

A single equation model like (6.1) can arise either directly from an economic

model or as the result of a multivariate analysis.” The latter case may obtain if

6 Although the model as it is characterized in (6.1) does not allow for trends in the regressors,
the asymptotic results derived in this paper remain valid for hypotheses on 3 if the trends in
the regressors are included in f (t) . This stems from the fact that the test statistic is invariant
to projections of subsets of regressors in linear models. See Kiefer, Vogelsang and Bunzel [1998]
for details.

"For a recent empirical application, see Brouwer and Ericsson [1998|. Here a single equa-
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either the multivariate model directly delivers a system like the one in (6.1) above,
or when some parameters estimated from the full system are taken as given and
the model accordingly transformed.

At times, it will be useful to stack the equations in (6.1) and rewrite them as
y=f(T)a+ XG+u. (6.2)

Here f (T') is the (T" x k:l) stacked vector of trend functions, and X is the (T" x k;)
matrix of regressors. Furthermore, § will denote [o/ G| and ordinary least squares
will be used to obtain an estimate of  (denoted by ).

The following notation is required to state the central assumptions of the chap-
ter. Denote S; = Z;.=1[ f (), X;]uj, and let wg () be a k-vector of independent
Wiener processes, and [rT] be the integer part of rT, where r € [0,1]. “ =" is
used to denote weak convergence. The following assumptions will be sufficient to

obtain the main results of the chapter.

Assumption 5 :

T2 Y0y wy () ,
= 0 , where wy (s) and w; (s) are indepen-
-1 rT
T3y | wy (r)
A O ;
dent, Q = , and AA’ and o? are 2w times the spectral density
0 o

(evaluated at frequency 0) of v and u respectively.

Assumption 6 :

There exists a (k; X k;) diagonal matrix 77 and a vector of functions F,

tion is obtained from a multivariate model of cointegration, and inference is conducted on the
cointegration vector.
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such that

ref (t) = F (£) +o(1)
fol Fi(s)ds <oo,i1=1,...k

det [ JLF(s) F(s)'ds] >0

The functional central limit theorem stated in Assumption 5 can be obtained by
placing mixing restrictions -on the errors. The restrictions on the trend function
stated in Assumption 6 are general enough to allow polynomial trends, but rule
out ill-behaved trend functions like f; (¢) = 1/t and trends that are linearly depen-
dent asymptotically.® These assumptions can be relaxed, but as they stand, are
sufficiently general to cover most commonly used models. Both assumptions will
be maintained henceforth. For later use, let F (T') be the matrix of the stacked
F (t/T) functions.

Using Assumptions 5 and 6, the asymptotic distribution of the least squares
estimate of 9, 9, is derived in Lemma 2. To that end, it is necessary to develop
some additional notation. wf (s) is defined as the residual from the projection of
wy (s) on the subspace generated by F (s) in the Hilbert space of square integrable
functions on [0,1] with the inner product (f,g) = fol fg. Correspondingly, F (s)*
is the residual from the projection of F (s) onto the space generated by w (s).

The exact expressions can be found in Appendix D.1.

8These assumptions follow Vogelsang [1998].
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Lemma 2 Suppose Assumptions 5 and 6 hold. Then
1 ! LS|

. FX(s) FX (s)' ds FX (s)du, (s

Dt (3-6) = (o 2)"") (fol (5) FX (s ds) Jo £ (5)de (4

(o wE () wE () ds)  Jy wE () dwn (5)

where
s=|%™ %\ siDp= mr 0
0 A 0 Tzl

The asymptotic distribution of (9 —0) is a function of the independent Wiener
processes w; (s) and wy (s), the normalized trend functions, F'(s), and the pa-
rameters relating to the correlation structure, o and A. Note that the asymptotic
distribution of (§ — ) is proportional to (¢ (£/)™") , the only unknown parameters
entering into the asymptotic distribution of (@ —0). This proportionality plays an
important role in the construction of the test statistic, as will become apparent
later when a data-dependent matrix with the same asymptotic proportionality
property is found. To foreshadow, such a matrix will then be used to transform
(6 —8) in such a way that the asymptotic distribution of (6 —6) no longer depends
on o and .

If the errors are not serially correlated, standard Wald tests can be constructed;
such tests on B are asymptotically x2-distributed.® However, if the errors are se-
rially correlated, the standard procedure to date has been to estimate the asymp-
totic covariance matrix.!?® Using the estimated covariance matrix, standard Wald
and t—type tests can be carried out.

Instead of following this route and proceeding to estimate the correlation struc-

ture, the test developed in this chapter relies on a data-dependent transformation

9For this result and the derivation thereof see Hamilton {1994; Chapter 19].
OHamilton {1994; pp. 607] suggests using non-parametric covariance matrix estimates as a
possible way of dealing with serial correlation.
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which transforms the parameter estimates in such a way that the asymptotic
distribution of the transformed parameters no longer depends on unknown pa-
rameters. As will be established below, the transformation matrix has a non-
degenerate asymptotic distribution (as opposed to converging to a fixed matrix).

The transformation is derived in the next section.

6.3 The Test Statistic

The transformation of the parameters of interest () that will eliminate the nui-
sance parameters relating to the correlation structure in the asymptotic distri-
bution of the test statistic is now derived. Consider T‘%S'[,.T], where S”frﬂ =

[rTl[ f (¢) Xila,, and 4, are the OLS residuals obtained from estimation of the

model in (6.1). In Appendix D.2, the following lemma is proven:

Lemma 3 Suppose Assumptions 5 and 6 hold. Then

[T}
L4 S R t) | -
14078 = 17407° 3 | 19 |acs om0t ),

t=1

where

Py - | R EGdw(s) ] [ [fF(s)F(s)ds  [gF(s)we(s) ds
@) = [ ka (s) dwy (s) | [fogwk (s) F(s) ds ffwk (s) wy (s)’ds] %

(fo FX (s FY(S) ds) lfol FX (s)dw, (s)
(fo wf (s) ds) fo £ (s) dwy (s)

Note that the asymptotic distribution of S'[rrl and the distribution of the parame-
ters share a common property: both are proportional to ¥. This property is used
to create a transformation of the parameters, which ensures that the asymptotic
distribution of the transformed parameters do not depend on . To this end, de-

fine C = T2 Zz;l 5}5’{. From Lemma 3 and the continuous mapping theorem, it
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follows that

DF'CD;' = T“ZT:[ ‘%D;‘S‘t] [ ‘%D;lé‘t]’

= (02%) /0 QF () (QF (r)) drZ’

= o?TPfY,
where

PF = fo QF (r) (QF () dr.

A matrix whose asymptotic distribution is proportional to ¥ has now been found.

Letting C = C3 (C’ %) be the Cholesky decomposition of C, define the trans-
-1

o . £(T)£(T) £(T)X -
formation matrix M = | % C2. Then the following

X'f(T) X'X
lemma can be stated:

Lemma 4 The asymptotic distribution of M~'Tz (9 - 6') does not depend on o

or on X..

The proof of Lemma 4 along with the expression for the asymptotic distribution
can be found in Appendix D.3. The fact that the asymptotic distribution of
M™1Tz (9 - 9) does not depend on the nuisance parameters could be utilized
to construct a t—test for simple hypotheses. This is not done here, as these
hypotheses are equally well handled by the test statistic which encompasses more
general hypotheses. This more general test statistic is developed. below.

To construct a Wald-type test, define
—~1 -1

1| E@E(T) £(T) X o1 £(T)£(T) £(T)YX

B=1|=
T XE(T) X'X

|

Xf(T) X'X

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



89

Most hypotheses of the form H : RO = r, can now be tested using the following

test statistic:
F =T (Rb- r)' [rBR - (Rb-7) /a.

Notice that B enters the test statistic at exactly the place where a covariance
matrix estimate would typically be inserted. It is important to note, however,
that B is not an estimate of the covariance matrix. In fact B converges to a
non-degenerate distribution.

In what follows, two different types of hypotheses will be considered: Hy :
RFa = r and HY : RXB = r, where R¥ and R are non-stochastic restriction
matrices of dimension q x k; and q x k respectively. Both R and R* are assumed
to have rank ¢g. The separation of hypotheses on the two types of parameters is
required to eliminate the nuisance parameters and simplify the asymptotic distri-
bution.

Some additional notation is required to state the asymptotic distribution of
F* under H{. As is well-known, estimators of coefficients on different trends
will often converge at different rates. Specifically, the coefficients entering the
constraint which converge the slowest will dominate the asymptotic distribution.
In order to formalize this, let u; be the largest non-positive power of ¢ in the
nonzero elements in the i’th row of RTr. Then define the ¢ x ¢ diagonal matrix A
in such a way that A; = 7%, and let R* = limp_.co A~'Rrr. Finally define @ (s)
as the residual from the projection of the first g coordinates of wf (s) onto the
last (k — q) coordinates of wf (s). The following theorem states the asymptotic

distribution of F™.
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Theorem 12 Suppose Assumptions 5 and 6 hold. Then

(a) Under H§S,

P [ [ o @] [[ve V(r)'er—l [ at @) /a

where
V(r) = /Or u“zf (s) dw (s)

- (/Or zbf (s) u”)é'" (s)’ ds) (/01 12)5 (s)wf (s)'cls)_lll 1.215 (s) dwy (s) -
(b) Under Hf, if k > 0,

F* = (R*(/1FX(S)FX(s)'ds>_1/olFX(3)dw1(3))l

F‘ (s) FX (s) ds) B /0 Ly (r) (VF" (r))' dr

-1

0

( FX (s) F¥ (s) s) R (R

R" Fx(s FX (s)'d )-I/IFX(s)dwl(s)>

where

VFS () / FX (s) dwy (s ( / FX (5) FX (s) ds)-
( /0 FX (s) FX(s)'ds) /0 FX (s)dwy (s).
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(c) Under HE, if k=0,

Fo= /‘F<S)F(s)fds)“ [ o)
[R‘ /F(s)F (s) ds> /vF (r) (VF (1) dr
([ Firrore) I(R:yr
<R‘ ([ Frereers) /olms)dwl(s))

where
VE(r) = /OTF(S) dw; (s)

- (/OTF(S)F(S)'ds) (/OlF(s)F(s)'ds) /OlF(s)dwl(s).

Part (a) of the theorem concerns testing of hypotheses on the cointegrating vector.

-1

Through @) (s), this distribution will depend on i) the number of restrictions
being tested, i) the number of regressors in the model, and iii) the trends included.
The critical values of this distribution have been simulated for k and q up to 8
in the cases with a constant, a constant and a linear trend, and a constant, a
linear trend and a quadratic trend. The critical values are provided in Tables
6.1-6.3. The critical values for k£ and q up to 15 are available upon request.
All the critical value presented in this chapter have been simulated using sums
of N(0,1) i.id. random variables to approximate the Wiener processes in the
distributions. In each case, 10,000 replications were used, and the integrals were
computed as averages over 1000 simulated observation points. This is the case for
all simulations in this chapter, unless otherwise stated. The program GAUSS was

used for all simulations in this chapter.
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Parts (b) and (c) of the theorem concern tests of hypotheses on the trend
functions when regressors are, and are not, included in the model respectively.
The asymptotic distribution here depends on exactly the same parameters as in
part (a), and in addition, it depends on R*. The presence of R* in the asymptotic
distribution reflects the different rates of convergence of the coefficient estimates
of the trends. Tables 6.4-6.9 provide the critical values for all hypotheses with
g equal to 1 on the trends in the model. The tables cover the model with just
a constant, the model with a constant and a linear trend and the model with a
constant, a linear trend, and a quadratic trend, allowing for up to 8 regressors in

these models.
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Table 6.1: Critical Values, Constant, No Trend

k q 90% 95% 97.50% 99%

1 1 39.941 64463 95.198 141.379
2 1 42.531 67.043 101.554 161.063
2 2 51430 75914 107.050 147.865
3 1 42.842 70.699 102.425 165.225
3 2 51.482 75.152 102.746 141.582
3 3 59.443 80.974 108.475 152.800
4 1 42996 66.919 98.473 158.323
4 2 52.419 76.521 105926 152.213
4 3 61.214 87.044 111.111 147.060
4 4 68.841 91445 114.780 154.083
5 1 41.403 66.435 102.562 160.043
5 2 53.005 77.154 104.592 146.212
5 3 61.827 84.704 111.876 142.583
5 4 71.013  95.087 120.736 152.009
5 5 78.076 101.373 126.923 164.426
6 1 41.059 63.989 97.631 150.444
6 2 52.665 78.567 108.830 148.055
6 3 62.948 88.009 111.270 151.113
6 4 71.512 95.028 121.887 156.659
6 5 80.503 106.103 129.534 164.301
6 6 89.009 112.603 137.332 168.117
7 1 40.744 64.536 94292 143314
7 2 52461 75.540 101.681 139.659
7 3 62.786 85.263 110.869 146.516
7 4 70.879 96.156 119.198 155.765
7 5 78.813 103.290 128.257 164.253
7 6 87.056 111.456 136.388 170.960
7 7 93.511 116.464 143.263 176.476
8 1 41.328 66.412 98.689 140.320
8 2 52401 75.654 102.149 139.288
8 3 61.930 86.174 111.639 148.823
8 4 71.745 96.014 121.467 162.687
8 5 80.671 105.717 133.598 173.835
8 6 89.189 115.504 141.195 180.695
8 7 97.376 122.492 150311 187.835
8 8 104.039 131.187 156.800 190.164

Model: y, = o, + BX, + u,
HyRB=r,rank(R)=q
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Table 6.2: Critical Values, Constant, Linear Trend

k q 90% 95%  97.50% 99%

1 1 40302 67.331 100.574 150.131
2 1 41.048 64983 95.489 147.936
2 2 51.350 76.736 103.065 148.711
3 1 40.704 66.470 99.157 151.090
3 2 52.836 78.077 105.669 152.292
3 3 62.749 87.868 113329 153.347
4 1 42.663 68.085 97.591 155.178
4 2 53.540 79.826 107.101 149.458
4 3 63.961 87.373 111.070 143.204
4 4 70.892 94.058 116.727 153.595
5 1 41.821 67376 99.607 152917
5 2 52332 76.406 102.789 142.259
5 3 62.047 85.743 108.786 142.031
5 4 71.411 93.383 117.568 147.852
5 5 78.657 102.028 125914 158.851
6 1 40.778 65.865 97.849 144.572
6 2 52.819 77.826 103.948 147.378
6 3 62.691 88.168 112.699 152.327
6 4 72771 96.024 124.426 157.167
6 5 82.178 106.089 129.627 167.112
6 6 89.187 112.979 138.177 173.989
7 1 41.379 66.153 97.654 147515
7 2 52396 77.377 104.253 145.342
7 3 61.967 86.013 112.262 148.147
7 4 71.365 94.125 118.493 155.587
7 5 80.031 102.343 126.040 161.689
7 6 88.732 111.442 138.584 168.871
7 7 95.325 119.017 144373 175.987
8 1 41.855 65.646 96.733 138.585
8 2 52.880 76.271 102.861 139.301
8 3 62.837 87.332 114.177 152.365
8 4 71.726  98.535 123.487 163.620
8 5 81.571 106.123 131.457 163.516
8 6 90.326 115.252 142.593 177.756
8 7 97.385 123.846 149.708 183.471
8 8 104.046 130.620 157.268 193.199

Model: y, = o + a,t + BX, + u,
Hy: RB =1, rank(R) =q
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Table 6.3: Critical Values, Constant, Linear and Quadratic Trend
k 90% 95% 97.50% 99%
40.901 65.625 92960 147.419
40906 65977 97.374 149.117
52.741 77904 106.186 144.130
42997 66.642 93.577 137.544
52.679 75.533 104.835 146.465
60.929 85.321 114.794 151.887
40.859 68.639 102.170 153.968
53.693 78.056 102.439 140.205
62.367 84.512 107.757 144.293
70425 92.268 116.921 155.833
41.743 66.446 100.747 150.121
52.307 74980 99.840 132.988
62.664 83.807 107.075 143.149
70.393 93.046 117.660 152.543
78.199 101.610 126.040 161.086
40.196 66.791 97.462 153.851
52.901 75.757 104.041 142.922
63.727 88.842 112.393 155.020
74.071 95982 121.698 159.960
80.535 105.627 131.286 166.083
89.287 114.607 142.655 179.816
42.491 67.789 100.358 147.496
51.889 77.450 104.480 147.797
62.766 87.165 114.896 151.412
72.963 98.068 123.676 164.721
82.437 108.603 134.586 173.427
89.145 113.264 140.902 177.243
97.081 122.450 150.617 185.986
40.392 66.337 95.583 143.188
52.549 74.199 99.595 134.496
63.265 89.436 116.867 157.467
73.755 99.281 125.514 160.995
82.359 107.812 132.491 166.428
90.756 116.617 145.619 181.820
99.187 126.714 153.042 185.649
8 105.653 131.474 157.223 194.111

Model: y, = a, + ot + ot® + BX, + u,
HyRB =r, rank(R) =q

0 00 G0 W 00 W OWNNNNNNNNNOah OO OO U LT bbb h W WD~

O NN O WL H WN = 90N AL =00V PE WNE=OBLAE WD =B WLWN =W~~~ ~—=[0O
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Table 6.4: Critical Values, Constant, Test on Constant

k 90% 95%  97.50% 99%

0 29.066 46.704 65.761 101.115
1 41272 66981 101.335 150.917
2 45.566  71.193 105.510 152.674
3 49.611 81.567 115.226 185.294
4 48.752 78268 113.942 174.757
5 48998 77.779 116975 185.329
6 50.007 82.780 123.154 196.556
7 52.564 84.088 122333 195.123
8 51.053 81.869 122.796 181.355

Model: y, = o, + BX, + u,
HoZ (0 4] =T

Table 6.5: Critical values, Constant and Trend, Test on Constant

k 90% 95%  97.50%  99%

0 44500 74.159 106.332 160.229
1 50.331 82912 116475 167.548
2 52.628 87.534 126.794 194.629
3 54937 88.148 132.070 199.587
4 52.207 82.831 123.600 196.940
5 52.054 86.823 127.757 196.587
6 52.110  83.437 127.109 196.183
7 54.583 88.108 128.936 201.540
8 52.021 88.203 125.961 198.052

Model: y, = a; + ot + BX, + u,

Ho: o =r

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



Table 6.6: Critical Values, Constant and Trend, Test on Trend

k | 90% 95%  97.50%  99%

0 40.586  65.500 97.940 149.300
1 45.824 73.820 105.282 166.101
2 45.650 74.752 108.416 160.058
3 45.177 72369 104.935 163.517
4 43335 69.712 104.218 155.573
5 43.643 70274 105.105 165.427
6 43.143  69.613 102.879 158.146
7 41.867 69.155 99.137 148.255
8 41.419 69.005 102.759 153.782

Model: y, = a; + ot + BX, + u,

Hol oy =r

Table 6.7: Critical Values, Constant, Linear and
Quadratic Trend, Test on Constant

k 90% 95% 97.50% 99% |
0 64.594 102.436 150.447 222.201
1 64.182 104.363 149.005 230.798
2 67.945 107.109 150.538 228.866
3 67.407 106.989 152.426 235.882
4 60.055 96.479 137.906 219.423
5 61.426 101.818 152.135 228.772
6 59.833 97.551 148.058 229.032
7 60.128 101.135 149.611 219.516
8 59.925 96.901 144.817 215.843

Model: y, = a; + QL +a3t2+ BX, + u,

HO: 0.1 =r
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Table 6.8: Critical Values, Constant, Linear and
Quadratic Trend, Test on Linear Trend

90% 95%  97.50%  9%%

45.990 73.994 108.815 161.666
47211 75400 110.295 165.738
48.647 - 78216 112.615 171.502
47.890 74293 107.468 164.720
45580 75.160 112917 171.393
44712 71353 108.486 165.347
44563 71918 103.713 156.789
42.588 68375 95997 156.518
43231 69.003 102.201 158.722

Model: y, = o + a,t +ot, 0+ BX, + u,

0NN bW~ O|R

Ho: =1

Table 6.9: Critical Values, Constant, Linear and
Quadratic Trend, Test on Quadratic Trend

90% 95%  97.50%  99%

44315 71.743 107.814 158.306
46.048 74.218 104.328 165.030
48.228 76.563 111.731 171.607
46.234 72.582 106.676 154.149
45.793 75.116 108.106 162.784
45206 71.312 106.484 169.002
43.687 69.890 101.159 145975
44393 70377 104.009 158.481
44282 72791 106.057 162.112

Model: y, = a; + a,t +a3t2+ BX, + u,

00 1A W s WN = OIF

Hoi a3 =r
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6.4 Monte Carlo Experiments

In this section, results of simulation experiments designed to analyze the finite
sample performance of the test statistic are reported. To obtain a reference for
comparison, the simulations are repeated for tests currently employed in the lit-
erature.

The experiments concentrate on two different models, one with four regressors,
and one with no regressors. Both models have the same trend function, f () =

[ 1 ). The first model may be formally stated as:

Ye = a1 + aal + XZ‘B -+ u (63)

Xe= X1+ vy,

where X, is a (4 x 1) matrix of regressors, and the second model is described by
Y = a1 + oot + u,. (6.4)

All the simulation results reported in this section have been performed using
10, 000 replications.

The first set of simulations are based on (6.3). The hypothesis being tested is
Hy : B, = 0 against the alternative 3, # 0. The errors are generated according
to us = puc_; + e; + ne,_,, where e, is 7.2.d. N(0,1) and {v:} is i.2.d. N(0,1).
Simulations are reported for p = 0, 0.9, 0.95, 1, and for n = 0, —0.4, 0.4. The

sample size is 40.
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Alongside the results for F*, results for two Wald tests are also reported.
The column labeled WALD reports the results for the standard Wald test which
is constructed by replacing the usual OLS estimate of the variance by a HAC
estimate of the long run variance constructed from the OLS residuals. The specific
HAC estimator used is the one recommended by Andrews (1991), which utilizes
the quadratic spectral kernel; the automatic data-dependent procedure proposed
by Andrews (1991) was used to select the bandwidth. The column labeled WALD-
PW is computed using the HAC estimator with pre-whitening based on a AR(1)
model, as suggested by Andrews and Monahan (1992).

The results of the simulations described above are reported in Table 6.10. It
is clear that even when there is no serial correlation, the Wald tests are oversized;
F* does substantially better. In unreported simulations, it was seen that the
size of the Wald tests does come closer to 5% as the number of observations
increase. The size-adjusted power of F'* is always slightly lower than that of the
two Wald tests. Even when serial correlation is high, the size of F* is generally
less distorted than that of the Wald tests. The exception to this statement is the
Wald-PW test, which is less distorted, when the moving average coefficient of the
data generating process is positive. For this test, unreported simulations indicate
that size approaches 0 as the MA coefficient and/or sample size increases. Further
investigation is required to determine the exact circumstances in which the Wald-
PW test will perform this well. In terms of size, the Wald test which does not use
prewhitening, is clearly dominated by the other two test statistics,'! but in terms
of size-adjusted power, the Wald statistic which does not use prewhitening does

better than the other two.

llpven when the size distortions of the new test are lower than those of the Wald tests, the
test is still oversized when serial correlation is high. Section 6.5 below suggests a way of reducing
the size distortion.
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The second set of simulations are designed to compare the new test statistic to
two test statistics developed in Vogelsang (1998). To define those test statistics,

it is necessary to introduce the model:
. |
Jo =061t + 62 |5 (£ +1t) | + E, (6.5)

where # = 7%, v; and E, = S -_, w;. Let § be the OLS estimate of §' = [§} &3],
and 5 be the OLS estimate of the error variance. Finally, let f (T) be the matrix
of the stacked trend functions in (6.5). Then the two relevant test statistics from

Vogelsang (1998) can be defined as follows:

-1

PSSy =T (Esg)' [R (? (TY ¥ (T)’) N R’] 8o/52,

(o) [R(E(@Y £(T) R

PSWr = T-110052

These do not exactly correspond to the test statistics presented in Vogelsang
(1998); specifically, the correction for high serial correlation is not employed. This
is done so as to enable a more meaningful comparison of the three tests.!?> Note
that a comparison of F* with PSr and PSWr is especially interesting because,
like F*, neither PSt nor PSWr rely on a direct estimate of the covariance matrix
and the asymptotic distributions of these test statistics do not depend on param-
eters relating to the error structure. In fact, PSWr can be viewed as belonging to
the same class of test statistics as F'*; it too utilizes a data-dependent transforma-
tion of the OLS parameter estimates for the purpose of eliminating the nuisance

parameters.

12Gection 6.5 presents a comparison where the correction for high serial correlation is imple-
mented for all three test statistics.
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In the simulation experiment, the hypothesis being tested is Hy : ap = 0
against the alternative o 7# 0. Again, the errors are generated according to u, =
pus_y + e +ne.—1, where e, is i.i.d. N (0, 1) . Finite sample size and size-adjusted
power is reported for sample size T' = 40, and for p = 0.8,0.9,0.95, 1 and n = —0.4,
0, 0.4. Simulations for smaller p were performed, but for these parameter values
the three statistics are indistinguishable; hence the simulations are not reported
here. As is clear from Table 6.11, size for all three tests is substantially higher
than 5% for high values of p; moreover, the size of F'* is significantly less than that
of PSt and PSWr. In terms of size-adjusted power, however, PSr and PSWr
perform uniformly better than F*. In unreported simulations, it was observed
that these results prevail for sample sizes greater than 40 as well.

Given the substantially less-distorted size of F'*, there is reason to believe that
the power of F™* relative to PSr and PSW7 may improve when the adjustment
for high serial correlation is implemented. The intuition behind this observation
is that the adjustment is primarily designed to get size right; as usual the “cost”

is lower power.

6.5 Correction for High Serial Correlation

From the simulation experiments in the previous section, it is clear that size be-
comes distorted when serial correlation is high. An examination of the asymptotic
distribution of the test statistic when the errors contain unit roots may provide
insight into the cause of this systematic size distortion. This is because the asymp-
totic distribution of F'* when the errors have unit roots, is “closer” to the actual

distribution than the distribution of F* described in Theorem 12.
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Lemma 5 Suppose u is [ (1). Then

(a) Under H,

= [/Ow:; (5) w1 (5) ds]' [ v (r)vu(r)'dr]-l [fowf (5)ur(5)ds| /g

where

Vu(r) = /Orﬁzf(s) wy (s)ds — (/Oru“/g(s)'zbf (s)ds) X

</011215 (S)'zbf (s)ds) _1/01@5 (s) wy (s) ds

(b) Under HE, if k > 0,

F* = ( (/ FX(s)FX (s)'d ) /Fx(s)wl(s)d.S)I
[R / F¥ (s) F* (s)'d )—l /0 VI (r) (VE ('r)),dr

( FX (s) FX (s)' ds>—1(R‘)’} B

( / FX (s) FX (s)'ds>_1 /0 CFX (), (s)ds)

VES (1) = /0 " FX (s)w (s) ds — ( /0 "X (s) FX (s)'ds) y

</01FX (s) FX (3)'ds) —I/C;IFX () wy (s) ds.

where
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(¢) Under Hf, if k=0,

P (R* ([rorers) [Fouo ds)
[R" /F(s F(s)d ) /VF(T) (VF (1) dr
([ Forrwre)’ (Rty} )
(R* ([rorrers) [Fouo ds)

/

where

VF(r) = /orF(s)w1 (s) ds — ( OTF(S)F(S),dS) (/OIF(S)F(S),dS)—I y
/OIF(S) w (s) ds.

As before, the asymptotic distribution of the test statistic does not depend on
nuisance parameters. The fact that F'* (when the errors contain unit roots) con-
verges to a distribution is important. If F* diverged, it would not be possible to
implement this type of size correction.

The analytical expressions for the asymptotic distributions themselves do not
provide much insight; nonetheless, they can be used to simulate the critical values
when the errors are I (1) . This has been done for the sets of models and hypotheses
used for the simulation experiments in the previous section. Table 6.12 tabulates
the critical values for model (6.4) when the errors are stationary and when they
contain a unit root. Table 6.13 tabulates the corresponding critical values for
model (6.3).

Clearly the critical values for the unit root case are much higher for both models.

This implies that the true hypothesis will be rejected too frequently when the I (0)
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Table 6.12: Critical Values, Unit Root Errors, Model (6.4)
u /level [90% [ 95% | 99% |

I(0) 55.7 | 853 | 164.0
T(1) 2,520 | 4,390 | 11,500

Table 6.13: Critical Values, Unit Root Errors, Model (6.3)
Tw/level [90% [95% |99% |

T(0),q=1] 4266 |68.09 | 155.18
T(1),q=1] 13641 | 230.66 | 634.57

critical values are used for data which is approximately I (1) ; hence the inflated
size.

It is possible to enhance the performance of the test statistic when serial corre-
lation is high. The principle is to modify the test in such a way that the relevant
critical values remain the same, even when the errors are I (1). Note that the
procedure does not alter the asymptotic performance of the test when the errors
are not highly correlated. As such, it may be interpreted as smoothing the dis-
continuity in the asymptotic distribution that arises when the error term moves
from a stationary to a unit root process. This method is similar to that employed
in Vogelsang (1998).

In this chapter the alteration of the test statistic will be implemented for the
special case where there is just a constant and a linear trend in the model. The
alteration utilizes a unit root test introduced in Park and Choi (1988) and Park
(1990). Some additional notation is required to give a precise definition of the

modified test statistic. Consider the regression

9

Y =y + agt + Zaiti =+ U;. (6.6)
i=3
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Let Jr denote the standard OLS Wald statistic, normalized by T-!, used to test
the hypothesis a3 = ... = ag = 0.!* Then Jr = (SSRgr — SSRy)/SSRy, where
SSRy is the sum of squared residuals obtained from the estimation of (6.6) by
OLS, and SSRg be the sum of squared residuals from the OLS estimation of (6.4).

Let FY denote the modified test statistic. Then
n -1
F/ =T (Ra—r) [RBR’] (R& — 1)/ (gexp(bJy) ,

where b is a constant. In Appendix D.6 it is shown that the asymptotic distribution
of FY is the same as that of F** when the errors are stationary. When they are
not, the asymptotic distribution of F” is different from that of F™*. While the
asymptotic distribution of F7 does not depend on parameters relating to the
correlation structure, it does depend on b. For each nominal confidence level, b
can be calculated such that the critical value is the same, irrespective of whether
the errors in the cointegration relationship are I (0) or I (1).

The simulation experiment comparing F* with PSt and PSWr from the pre-
vious section is now repeated, but with the correction for high serial correlation
implemented for all three statistics. The results are reported in Table 6.14. Not
surprisingly, the size of all three tests is now substantially closer to 5%, and un-
reported simulations verify that as sample size grows, size is less distorted. The
difference in size between the three tests is now much less than before the correc-
tion was employed. As expected, the differences in size-adjusted power are now
much less, and for some parameter values, F'* is more powerful than PSt and

PSWr.

13 A ppendix D.6 describes the procedure used to determine the fact that six additional regres-
sors should be added in (6.6).
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6.6 Conclusion

In this chapter a new test statistic that is robust to serial
correlation/heteroskedasticity of unknown form is developed. The environment is
a single-equation model of cointegration that incorporates linear polynomial trend
functions. The standard approach used to deal with heteroskedasticity and serial
correlation in models of this type has been to estimate the correlation structure
of the error terms. While such a technique generates consistent estimates of the
correlation structure, the possibility of substantial size distortions in finite samples
remain. The test proposed in this chapter eliminates the need to estimate the
correlation structure, and hence removes an important source of size distortion.

To evaluate the finite sample performance of the new test, simulation exper-
iments were performed. It was shown that in general, size distortions are much
less severe than those of tests currently employed in the literature, and that the
size-adjusted power of the new test is only marginally lower than that of tests cur-
rently employed. Furthermore, a size correction procedure was implemented for
a simple model, which illustrated that size distortion can be virtually eliminated,
even when the extent of serial correlation is substantial.

A fruitful extension of the approach outlined in this chapter would be the ex-
tension to models of cointegration, where the regressors are not exogenous. The
F* statistic cannot be used directly, as the asymptotic distribution in this case
depends on the parameters pertaining to the correlation structure. One possi-
ble way of getting around this problem, is to use the dynamic OLS regression
suggested by Saikkonen (1991), Phillips and Loretan (1991), Stock and Watson
(1993), and Woolridge (1991). It seems likely that F™* can be applied directly to

this regression, although a proof is required. This method would still require a
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choice of the number of lags and leads of the regressors to be added to the regres-
sion, but the benefits from circumventing the estimation of the serial correlation
parameters would probably still be present.

Another possible way of dealing with endogenous regressors is to find a different
transformation matrix than the one used in this chapter. This transformation
should yield an asymptotic distribution of the transformed parameter estimates
which does not depend on the parameters pertaining to the correlation structure.
It is not even clear, however, that such a transformation can be found. The
reason for this is, that the “nice” multiplicative manner in which the nuisance
parameters enter the distribution in this chapter would be lost. For illustrative

purposes examine the model with no trends and define

T ! /
. 1 Uy, Uy
Q0 = lmT E
T—o0 / /
t=1 Vgl Vgl
T t—-1 ’ ol
. —1 Uju, Ujvg
Ql = lim T E E E
T—oc - ’ ’
t=1 j=I1 'Uj'ut 'Uj'Ut

Q = Qo+Ql+Qll

Then it can be verified that the following version of Theorem 4.1 in Phillips and

Durlauf (1986) holds:

1
T (0 - 0) = Q2 / Wit (8) Wit (5)'dsQ%
0 22
1
[Q / W41 (8) Wet1 (S)IdSQ%’ + Qo + Ql]
0

where ],, and |,, refers to the specific block of the matrix in question, when parti-

=

21

tioned the natural way. Clearly, because of the way the nuisance parameters enter

into the distribution, the problem of transforming the parameters has become
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much harder, and such a problem may or may not have a solution.

The last issue discussed here is again a direction for future research. The topic
at hand is the choice of the transformation matrix. While the transformation dis-
cussed in this chapter ensures that the asymptotic distribution of the parameters
does not depend on nuisance parameters, and the test derived therefrom seems to
perform well, there are potentially a large number of data transformations that
could perform the task equally well or better. Specifically, all data-dependent
matrices that are asymptotically proportional to £ are candidates. In order to
find a way of choosing a specific transformation matrix from this large set. an an-
alytical analysis of optimality is required. The first step in this direction would be
to exactly determine the full class of tests to which this statistic belongs. Clearly
it would have to exclude tests which rely upon estimation of the correlation struc-
ture, since these would always dominate asymptotically. Then, from within this

class, the optimal test or tests, if any, would have to found.

Reproduced with permission of the copyright owner. Further reproduction prohibited without peg{iRigSiaBnaraa.com



Chapter 7

Conclusion

Economists write down simple theoretical models to explain certain economic
phenomena. At the point at which these models are subjected to the scrutiny of
data, the econometrician typically converts these models into econometric models
to facilitate the “testing”. At this stage of the scientific process, two sets of
parameters typically emerge from an econometric model: parameters that are of
interest to the economist and about which the theory has something to say, and
those that are not, about which the theory may have very little to say, called
nuisance parameters. For example, economic theory may have a lot to say about
the male elasticity of labor supply with respect to the wage in a labor market
model but may have little to contribute as far as how the standard deviation
of sample wage data may behave for a given sample. This creates a problem
in the sense that while statistical inference is drawn only on the parameters of
interest, the treatment accorded by the investigator to the nuisance parameters
can significantly contaminate the results. The chapters in this dissertation have
tried to grapple with a common theme: how should one conduct proper statistical
inference on the parameters of interest when nuisance parameters are present.
More specifically, means of conducting inference on the parameters of inter-
est, that are robust to the structure implied by the nuisance parameters, were

studied. One line of research explored the possibilities of conducting separate in-
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ference on the parameters of interest in general likelihood models, which contain
nuisance parameters. This work was built upon the theory of local cuts. The
other line of research concerns hypothesis testing in models with serial correlation
or heteroskedasticity of unknown form (the entire error structure is the nuisance
parameter here). A test statistic that is robust to different error structures, (and
does not require an actual estimate of the error structure) is developed.

The second chapter explored general likelihood modeis that have two sets of
parameters; the parameters of interest and the nuisance parameters. It defined
local cuts and adaptivity as well as marginal and conditional local cuts and ex-
amined the properties of models that allow for local cuts or adaptive estimators.
It is shown that block diagonality of the Fisher information matrix is a central
requirement for both local cuts and adaptivity when dealing with regular models.
In order to obtain a local cut in a model where an adaptive estimator is provided
it is shown that the information matrix must be insensitive to the nuisance pa-
rameters and the maximum likelihood estimates of all parameters need to be well
behaved. On the other hand, obtaining an adaptive estimate in a model which
allows for a local cut just requires that a well behaved estimate of the parameters

can be found.
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When local cuts are used to justifv separate inference, it is sometimes the
case that some estimate of the nuisance parameter is required. This need for
an estimate arises because a local cut only ensures that the score function will
be free of nuisance parameters asymptotically. The finite sample score used for
estimation, however, may depend on the nuisance parameters. Looking ahead
then, there.is some need to explore the properties this estimate of the nuisance
parameter must satisfy. In other words, we need to answer the question: How
‘bad’ an estimate of the nuisance parameter can we get away with?

Another direction for future research on local cuts is the extension of local
cuts to semi-parametric models. This is important because the situation where
the nuisance parameter is infinite-dimensional is also one where the gain from
avoiding estimation is highest.

The third chapter extended the concept of local cuts to an estimating equation
environment. The central result here is of prime importance because it establishes
a very clear and direct relationship between local cuts in the estimating equation
framework and the ability to conduct separate inference. Because the estimates
obtained from estimating equations are invariant to all full-rank multiplicative
transformations of the estimating equation, while the asymptotic distribution of
the estimating equation is not, we defined a transformation of the estimating
equation which eliminated the indeterminacy. It is precisely because of the spe-
cific properties of this transformed estimating equation that the above-mentioned
relationship emerges. Subsequent chapters exploited this result within the context
of a dynamic regression model.

The fourth chapter laid the foundation for a new test statistic that is robust to

serial correlation/heteroskedasticity of unknown form. The statistic is developed
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to test hypotheses in linear regression models of the form introduced in the third
chapter. The novelty here is that the tests are simple and do not require het-
eroskedasticity and autocorrelation consistent (HAC) estimators; hence the size
distortion caused by the estimation of the correlation structure is eliminated. The
development of the new test relies upon a data-dependent transformation of the
ordinary least squares estimates of the parameters, this is the exact transformation
used in the third chapter to show that a local cut existed in this framework. Ex-
amples were used to illustrate that the size of the new test is usually less distorted
and finite sample power greater than tests that utilize HAC estimators.

The fifth chapter extends the test statistics introduced in the fourth chapter
to a non-linear weighted regression environment. It is established that the class
of tests introduced in the third chapter is applicable in this framework as well.
Given that these new tests compare favorably to HAC methods in finite samples
and are simpler to compute, one speculates that they may attfact a wide body of
users.

It also bears emphasis here that the tests presented in the previous two chapters
introduced a new class of tests which are pivotal and robust to heteroskedasticity
and serial correlation in the errors. While the selection of the specific test statistics
within this class is somewhat arbitrary (there are many conceivable transforma-
tions that will yield asymptotic pivotal statistics), their properties with respect to
invariance to nuisance parameters and minor size distortion are highly desirable.
An open research problem is to develop a theory of optimality for this new class
of tests.

In the sixth chapter, the techniques introduced in the fourth and fifth chap-

ters are employed to develop a test statistic that is robust to serial correla-
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tion/heteroskedasticity of unknown form in a cointegration environment that in-
corporates linear polynomial trend functions. The test can be employed to conduct
inference on the trend function or the cointegration vector in a cointegration rela-
tionship, and to test hypotheses about the parameters of the deterministic trend
function of a univariate time series. Extensive simulation experiments revealed
that size distortions are generally less than those of tests currently employed in the
literature with no associated (substantial) reduction in power. A fruitful exten-
sion of the approach outlined in this chapter would be the extension to models of

cointegration with endogenous regressors or with multiple cointegrating vectors.
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Appendix A

Appendices for Chapter 2

A.1 Detailed calculations for Example 1

First we write out the expression of the two relevant terms:

Inp (z; 1, 0T (z)) = — (=D 1n (2n0?) — flnn
_# [Z 2 —nT (:I:)Q]
Inp (z;u,02+%iT(a:)) = —-(—";—l)ln(Qﬂ' <02+§_ﬁ)) —zlnn

[Zx —nT (z) ]

Examining the difference, we get the following expression:

0’2+7'

Inp (r; p,o” + %IT (f)) —Inp (z; 1, 0%|T (z))
- -—("—;1—) In (27r (02 + ﬁ)) + (1) ; D In (271'02)
oy [Tt s [ -
= ——(—"—;1—) {ln (271' (0'2 + %)) —1In (2#02)}

[ -t 6] [ - i

2 (o + 5= n
_ _(n;l) In ( (2W;ﬁ)> +1 [Zx? —nT (1:)2] [02 (ai/—;/e’/\/ﬁ)]
— e (14 5) + 4 [Y e T (@] [az (ai/ﬁ/ﬁ)]
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We will now look at the terms separately before proceeding any further. First we

use a standard Taylor expansion on the first term:

1n(1+;{/—,-1) = 2 to(n)

—("glfln(l-l--a%ﬁ) = (—-%-i—%) (;—fﬁ—{-o(n'l))

We now proceed to rewrite the stochastic terms, such that all sums are of variables

with mean 0, allowing us to apply a central limit theorem:
S = S (o) (4 o)
1
- ﬁ{ﬁZ[ﬁ—(ﬂ“O’z)J}+n(#2+02)
2 1 2
nT (z)” = nﬁZ(Q?i—#)'Hl]
(1 ? 1
— el L 2 _ .
= n_nZ(rz #)] +rp? +n2u= (2 — )

R IR C oot

2 s=nT @ = ﬁ{ﬁZ[—f?—(u2+02)]}+n(,ﬂ+02)
NS w-n)] -
—o/a{ =3 (- )

= \/ﬁ{—\/%Z[x?—(uuaz)]}_[{%Z(xi_#)}r
2 { = 3 (= )|+
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Finallf we put it all together to obtain the rate:

n_-lln(l + ) + 4 [Z:EQ —nT (x)z] [0,2 (;a\-/f/\/ﬁ)]
= —éi,;‘+o(1)+§ [HQL'}F} ﬁ{%Z[x?—(u2+02)]}
1 [}‘2(_:2%/7] H > (wi— #)H
{—5/\@_] Qu\/—{ Z(x, .U)} [ﬁ%} no

_ _%%@qug[wi—sf/f—)]ﬂu)ﬂu [m—)]{f [?—(u2+02)]}

scti] (16 S 0] [t (e D)

- en[ £/v/n ]+o(1)+0p(1)+0(n—%)‘OP(1)+OP(1)
)

l
D=
| e—

0'2(a'2+s/\/_
= O(1)+0p(1)=0p(1)

To obtain this result, note that all terms in {} converge to normal distributions.

A.2 Proof of Theorem 1

Since the model allows for a local cut, -a%;;ln p (x;v,7n), correctly normalized,
will converge to 0 as n — oo. Therefore, any estimates which are asymptotically
equivalent to the MLE estimates will have distributions determined as follows:

) e 3
0-v) = (gzlptval)) hlapGom)

) 9? s,
(n—mn) = (an«_,lnp(T;v,n)> %IHP(T,U,T))-

Thus, for separate inference to be justified, it is required that

2

5 5 g [.. &2 . -
an [r}ir?o—v—lnp(x Y an)} v [’}E& on? lnp(T,’U,T))J -

This is satisfied because of the assumption that the relevant corners of the Fisher

information matrix does not depend on nuisance parameters. The final require-

Reproduced with permission of the copyright owner. Further reproduction prohibited without pgiiRigsSiaAnaraa.com



121

ments for separate inference to be justified is that

9 [hm i1np(x v nIT)] aav [hm Q'P(T v n)}

87) n—oo n—oo

To prove that this holds, first note that we know

Ov
9 . = —3t3
—a—glnp(x,v,n]T) = O, (n )

0 ) _s
—mp(x;v,nIT)ﬁ = O0p(n72) &

such that
n%’%——a Inp(x;vu,n|T) =0p(l).
8U 2 1

This implies that the term of interest is

2
_Q_ lim [n% 3 lnp(x U T]IT)J = lim [n%‘% 9 Inp (x; v,n|T)}

n—oo dudn

= 1 n%—%imza(x;v AIT) 2 1np (0, 7IT)| -
Py 617 b av 2] ?

Then we can use the fact that

n34 L 1np (x;0,7IT) = Op (1)
av b} 3

to conclude that a necessary condition for

_(2_ lim [n
877 n—oo

NIU
I\)lv-'

ai np(x;v,nT)| =0
to hold is that

lirn 2-Inp(x v,n|T) =0.

N—r00

But

—8%— Inp(x;v,n|T) =0, (n"? : %)

so this limit would be 0 if

f 1
-§+§<0<=>f>1,

but this is simply saying that the local cut is of order greater than 1.
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A.3 Proof of Theorem 2

First look at the following expansion:

]_n( )i.*. &
= 5o PP TR T Guey

o
- E; - S
Inp(x;v,n)-;b-, U € [v, v+ —]

vn
But, since the MLE is asymptotically normal, we know that n‘%gav— Inp (x;v,7)
converges to a normal distribution and that %%;}, Inp(x;v,n) converges to a

negative definite matrix. Therefore it must be the case that
Inp (X;v+ %n) —Inp(x;v,m) =0 (1),

but by the definition of a local cut:

Inp (X;v + %n) —lnp(x;v,m) = Inp (x;v + —E\/%WIT) —Inp (x;v,0(T)

6.
Inp | T; =L — .
+ p( ,v+ﬁ,n> Inp(T;v,n)

= 0 (n-%sc(v)> L0 (n—émv)) _

But by the definition of a local cut, fm (v) > sc(v) and therefore

13

£ —=sc(v
Inp (x;v+%,n> —Inp(x;v,m7) =0(1) =0 (n 2% ’)

and it must be the case that s.(v) = 0. The proof of s, () = 0 can be done in

exactly the same manner. B

A.4 Proof of Theorem 3

We need to show that

L, (6) =0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without pe{iRigSiaBnaraa.com



123

Now, it is well-known (since the slow rates are 0) that we can write

I, () = lim [l—a-%hlp(x;v,n)]-

n—oo

In general,
o0 8 o 0 g o
——In T —_——
8778 —Inp(x;vu,n) = 5 5o p(x;v,n|T) + 5 B0 Inp(T;v,n).

So it is sufficient to show that

1 1
im [12.2 107 0 onl)| =0 A lim | &2 np (T )] =o

Since the model allows a local cut, the following equation holds:
Inp (x; v, n + %|T) —Ilnp(x;u,n|T) =0 (n‘%f‘:(”)) (A.1)
and using the standard Taylor expansion, we also know that
Inp (x; v, n+ %[T) =Inp(x;vu,n|T) + ailnp(x;v,n[T) -% +o (n“) =
n
86—77 Inp(x;v,n|T) = g {lnp (x;v,n + %IT) —Inp(x; U,T]IT)} +o0 (n’%)

Using (A.1), we obtain:
E%mp(mnm _ _fz {0 (n4#)} 40 (n7}) =0 (n H:+) 4o (nt)

Now, since the fast rates are greater than 0, this implies that

(‘% Inp(x;v,mT) =0 (n‘%)

This now provides us with the desired result:

1
lim {—ilnp(x;v,an)} = 0 and therefore
n—oo | nJN

19 9

nlgrolo{;a—a—lnp(x U, 17|T)} = 0.
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In the same manner it can be shown that

10 9

Jim {;a—v%lnp(i”;v,n)} =0

Hence [, (§) = limp—.co {%%%lnp(x;v,n)} =0. [ ]

A.5 Proof of Theorem 4

By the definition of adaptivity, © is efficient in the model P, (), Vn. The efficiency
bound in this model is I ;!. But in general the variance of ¥, if ¥ is LGR, is
(Im, — Iy ([,,,,)_1 Im,) , so to achieve this bound, it is necessary that I, = I, =

0. |

A.6 Proof of Theorem 6
By the definition of adaptivity, First note that
(’717 72) = (“U,TI + [vn ([rm)-1 U) =
(v,m) = ('71172 ) ([rm)_1 ’Yl) -

Substituting this into the log-likelihood function yields:

Lw,n) =1(v1,72 — Lug (L) " 7,) . Calculating that Fisher information matrix:

a _1 _ 0 1 0

aT“l (Yiova = Lon (Ing) " 1) = 3L () = Lon (Inn) 5;1(“171)

i L( Ly (L)"') = i [(v,n) = Ly (I )“—3—2—1(1; ) &
8718’72 71 3 72 un nm 7[ - 81}877 ] 77 un m 877677 1 n

= lyy — Ly ([rm)-1 [rm =0 u

[71'72
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A.7 Proof of Theorem 8

a)
Since Uy g is adaptive, and I, (@) does not depend on 7, we know that the

asymptotic distribution of s g does not depend on 7. This, in turn, implies that

lim {an (@;v,n + %) —mp(o;u,n)} =0, (A-2)

n—0od

but recalling the definition of local cuts,

6; 1
~. t _ N . ‘ffvn(fl)
Inp (v, v,n + —\/ﬁ) Inp(d;v,m) =0 (n ) . (A.3)

Comparing (A.2) and (A.3) it is clear that

and hence that f,, (n) > 0.

b) Since © is asymptotically normal, we can approximate Inp (9;v,7n) using an
Edgeworth expansion. But the leading term in this expansion is N (v, I, (6)) .
Since this term does depend on v, it will be the term which determines the rate.

So if we let h (¥;v) be the logarithm of this distribution,

Inp (ﬁ;v + %,n) —Inp(D;vu,n) = h (z};v + %) —h(t;v) =0 (n“%s"‘(")) .

It is easy to check, however, that
4 = -~
B (050 + 7;) — h(%;0) = O0p (1)

and therefore s, (v) =0. ®
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A.8 Proof of Theorem 9

We will prove the theorem in two parts:

a)min (sm, (v), fe (v)) =0

b)sc(n) =0 _

Furthermore, we know from Theorem 8 that s, (v) = 0 and that f,,(n) > 0.

Holding these together we obtain:
Sm (V) =5:(n) =0, fm(n) >0and f.(v) 20

implying that there is a marginal local cut in the model. Now for the proofs of

a) and b):
a)
Since U g 1s adaptive, we know that
9,
—lnp(ziv.) = O (V7). (A.4)
We also know that
Inp (X; v+ Sk, 77) ~lnp (x;v,7) (A.5)

= Inp (X§ v+ —Ej,;" TII’OMLE) —Inp(x;v,n|0OarLE)
+Inp (@ArLE;U + 5—‘,;#]) —Inp (DarLe;v,m)
= O (n'%s"‘(”)> + O (‘n_%fC(”))

and, from the standard Taylor expansion,

a )
np (z;v+ %,7) —~lnp(zv,n) = = lp(mvn) E+o(n™) (A6
ou vn

= OP(\/a—f\/‘—;-f-o(n"l) =0p(1).
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What remains is to connect this result to the rates. Comparing (A.5) and (A.6),

we get the following equality:
Op(1) =0 (n-%SmM) +0 (n-%f«M) (A7)

implying that min (s (v), fc(v)) = 0.
b) Since 7, ¢ is LGR, we know that

587—1 Inp(z;v,n) = Op (V/n) (A.8)

Using the standard Taylor expansion together with (A.8), we get the rate for a

shift in 7 in the entire likelihood function:

. 0 A _
Inp (x;v,n+ %) —Inp(z;v,m) = %mp(x;v,n) % +o(n)
= OP (1) ’
but we also know that
Inp (x; v, n + ;‘}‘;—) — Inp (x;v,7)
= Inp (X; v, M+ %l%ws) —Inp (x;v,nOnLE)
+Inp (fJMLE; v, + \—i‘—;) —Inp (DrrLes v, M)
- 0 (n—%sc(n)) +0 (n—%fm(n))

Holding these together, we obtain
Op(1) =0 (n—éscm)) +0 (n—.-;fmtn)) _

From Theorem 8, we know that f,, (7) > 0, and therefore it must be the case that

sc(n)=0.1
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Appendix B

Appendices for Chapter 4

B.1 Proof of Theorem 10

Under the null hypothesis and Assumptions 1 and 2 it follows from (4.2) and (4.5)

that

F* = T(R(B-B))[RBRT (R(B-B))/q
= (RT3*(3 - B))[RBR) ™ (RT*(B-B))/q

= (RQ'AWi(1))[RQ'APAQ 'R\ RQ™'AW,(1)/q.

Because the matrix RQ~'A has rank ¢ and W,(r) is a vector of independent
Wiener processes and is Gaussian, RQ'AWi(r) can be written as AW (r)
where W7 (r) is a (¢ x 1) vector of independent Wiener processes, and A" is the
(¢ X q) matrix square root of RQ'AA'Q'R'. A" exists and is invertible because
RQ'AAN'Q™'R' is symmetric and full rank. Therefore, RQ AW (1) is equiva-
lent in distribution to A*W;(r). In addition RQ™'APA'Q™'R’ is equivalent in

distribution to A*P;A™ where Py = [ (W;(r) — rW;(1))(W; (r) — rWy (1)) dr.

128
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This follows because

RQ'APANQ 'R

RQ'IA{/ (Wi(r) — rWie(1)][Wk(r) — rWie(1)]dr}AN' Q'R

Il

= / (RQ™'AW(r) — rRQ'AW(1))(RQ AW (r) — TRQ'AW, (1)) dr
which is equivalent in distribution to
/ (AW, (r) — rATWZ (1)) (AW (r) — rAW;(1))'dr = ATFP;AY.
(4]

Thus, (RQ™'AWi(1))[RQ'APA'Q~'R|'RQ-'AW,(1)/q is equivalent in dis-

tribution to
(AW (D) [A P AT AW (1) /g = W (P W5 (1)/q
as required.

B.2 Proof that F* Satisfies the Frisch-Waugh-
Lovell Theorem

This proof is simplified by writing the model and F* in matrix notation. Write
regression (4.1) as Y = X + u. Let G denote a (T' x T') lower triangular matrix
with elements along the diagonal and below all equal to one. Let U denote a
(T x T) diagonal matrix with diagonal elements (4}, @, ..., @r). Define S =
GUX. Simple algebra gives S°r_, 5,5, = §'S = X'UG'GUX = X'HX where
H = UG'GU so that C = T~2X'H X . Without loss of generality, partition X into
X1 and X} where X contains the first £ columns of X, and X contains the last
k — k! columns of X. Partition 3 into 8] and 85 where 8 is a (k] x 1) vector
containing the first k] elements of 3, and 35 is a ((k — k}) x 1) vector containing

the last k& — k| elements of 3. To show that F* satisfies the FWL Theorem we
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must show that F* for testing 8] = O in regression (1) is computationally the

same as F™* for testing 87 = 0 in the regression
Y = X108, + 14, (B.1)

where Y = MY, X! = M}X}, & = Mju and M} = Iy — X5(X,X5) "1 X5, Let
B,l denote the OLS estimate of 47 from regression (B.1), and let R = [l O_/]-
By the FWL Theorem the OLS residuals from regressious (4.1) and (B.1) are the
same. Therefore the H matrix in regression (B.1) is the same as in regression
(4.1). Thus, the F* statistics from regressions (4.1) and (B.1) can be written

respectively as

T(RBY[R(X'X)™ X'HX(X'X)™'R|"(RB)/q. (B.2)

TE, (X, X)) " X HX (X X)) By /g (B.3)

By the FWL Theorem RS = Bll, therefore, (B.2) and (B.3) are computationally
equivalent if R(X'X) ' X'HX(X'X)"'R' = (X; X})"' X! HX (X X{)~ . It is suf-
ficient to show that R(X'X)"'X’ = (X|X!)~'X,. From the partitioned matrix

formula it follows that

- - .. X!
R(X'X)™'X' = (X1 X)L, — (X1 X)X X (X X)) | )
X}

= (XIX)™'X! — (X X)X X (X5 X)L X
= (X1 X)X (It — Xo( X5 X2) 7' X5)

= (X!1X))"' XMy = (X X1)7LX]

which completes the proof.
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B.3 Proof of (4.11) and (4.12)

The denominators of tg4¢c and t* are invariant to ¢ since they are functions of 1,

which is invariant to ¢ by construction. It directly follows that
plim (6;%56%627?) : (0;20'20;2)% =0o/o2,
and using (5) with simplifying algebra we have
1
622Co)E = (o/oR) | Wilr) - rWi(0)arl.
1]

Given these results, all that is needed to prove (4.11) and (4.12) is the limit of

T2(B — f3,) under the local alternative. Using Assumptions 1 and 2 we have

T T
T%(B —Bo) =c+ (T} fo —l7-3 zztut = c+oWi(1)/o2.
t=1

t=1

Simple algebra completes the proof.
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Appendix C

Appendices for Chapter 5

C.1 Proofof Lemmal

First we will prove a small proposition.
Proposition 1 T~ 171 2 F, (8,) [ﬁ Bo) ~ . (B)] =05 (T74)
C.1.1 Proof of Proposition 1
First we will make use of the following Taylor expansion of f, (ﬁ) around f, :
Fi(B) = R0 +F(Bo) (B=85) + 7o
foBo) = F(B) = —Fi(Bo) (B—8,) +77

where, since the third derivative of f.t is bounded by an integrable function, rr is

of order T—!. This implies that

[rT]

T-1 Z 9 F; (Bo) [ft (Bo) ~ f (B)}

s
rT]
— _7-t ZZTI: aiﬁ'pt (Bo) [F’t' (Bo) (B — 50) + TTJ

[rT]
— - Z 5%F (Bo) FY (Bo) (B - 60)

(rT]

+rrT 1 Z %F} (Bo)
t=1

132
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Since T! ZE’;’;] a—%ﬁ} (B,) F! (B,) is of order 1 and (B ——ﬁo) is of order T2,
the first term is of order T~2. Furthermore, since rr is of order 7! while
T-! ZE;TI‘ 5%715} (By) is of order 1, the second term is of order T~!. Collecting
these terms, we obtain the desired result:

[T}

TS R 90 [£(6) — i (B)] = 0 (T4) . m
C.2 Proof of Lemmma 3
First we expand F, (B) around [, in the following manner
F, (B) = F, (o) + ailBIR (Bo) (B —ﬁo> + s7

Where st consists of all the higher order terms of the expansion. Now, since
the third derivative of ft is bounded and B is VT-consistent, st is of order T!.

Making use of this, we obtain

[rT] [rT)

T 48y = T4y a=T%) F(B) (C.1)
t=1 t=1
[rT] [rT}

= TS ARG E+T Y o Fu(80) (8 o)
t= . t=

(rT]
+ (T%ST) 7! Z u
t=1
From (C.1), we have
[rT} [rT}

e =T72Y "a%p‘ (Bo) (B - ﬁo) @y + (T%sT) TS
t=1 t=1
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Examining the first term of {-1], we see that

T——E\f’ 5 E o) (B = o)
- 3 Bheoufr (5-a)]
[rTl

_ }: S F, (B0) [ (80) + 5 — £ (B)] [T (8- 50)]

(5-)

- T 5 P00 [ 00) - £ (B)] [T

Nl»—-

o o
-7 Zaﬂ Fo(Bo)a [T% (B—6s)]
[T}
= 7 Z 555 Bo) e [T5 (B Bo) ] +0p (1), (C2)
Where the last equality follows from Proposition (1). Since moment and mixing

conditions have been placed on 4, we can use a law of large numbers to ensure

that
(rT)
plim (T'IZ o7 —F, (B, @ ) =0.
Therefore
[*T]
T“Z 57 F+ (8o) (B~ o) e = 0p (1). (C3)

Now consider the second term of [.rj. Using arguments similar to the ones used

above, we obtain
rT) [rT] [rT}
T—l ’I:l.t = T—lz [ft (ﬁo ( )] +T— Z’ut
[rT] [rTl

= T3 F(8y) (B~ Bo) + T Y+ 0p (T7),
t=1 t=1
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and by applying a law of large number to 4., we establish that

(rT]
plim (T“‘ Zat) =0

t=1

and therefore, recalling that sr is of order T~ %,
. [rT] . (rT]
plim (T’is»p) 71! z ;| = plim (Tis'p) plim { 7! Zﬂt =0 (C.4)
t=1 t=1
From (C.3) and (C.4) it immediately follows that plim(ly) = 0. &

C.3 Proof of Theorem 11

We wish to find the asymptotic distribution of:

F*=Tr (ﬁ)/ [RBR’] - T (ﬁ) /q.
First note that
m(Bo) = T (B) +R (ﬁo - B) +0p (T7') &
r(8) = B+ 2
So under Hj
r(8) =R (B-8)+0r(T7)
implying that
ro= 1r(B) [RBR] (B) /a
= 7 [2(B-8)] [RBE]™ [ (8~ 60)] fa+Op (1)
= [RoQ AW (1)] [RoQ 'APA'Q™" Ry ! [RoQ T AW (1)] /g

But since RoQ 'A has rank q and Wj (1) is a vector of independent Wiener

processes that are Gaussian, we can rewrite RoQ AWy (1) as A*W; (1), where
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Wy (1) is a g—dimensional vector of independent Wiener processes, and A* is the
g X ¢ matrix square root of RgQ 'AA’Q'Rj. Note that this square root exist
because RoQ 'AA' Q7 'Ry is a full rank ¢ x ¢ matrix. Using the same arguments, -

note that
RoQ™"APA'Q™' Ry
1
= ROQ—IA/ (I’Vk (T‘) — TW[C (1)) (Wk (T) —_ T'I’Vk (1)), d’I‘AIQ—lR6
0

= / (RoQ AW (1) — rRoQ AW, (1)) -
0
(RoQ ' AW, (r) — TRoQ AW (1))  dr

- /1 (AW (1) — rATW; (1)) (AW (1) — rA W (1)) dr
0

— A~/0 (Wy (1) — W, (1) (Wy (1) — Wy (1)) dr (A"

A*F; (A*Y
implying that

Fro= (AW )] [T (A)] T [ATW (D] /a

= Wy (B)'Wr Q) /g
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Appendix D

Appendices for Chapter 6

D.1 Proof of Lemma 2

To ease the notation, let M; be the matrix projecting onto the space orthogonal to
the space spanned by f (T'), defined by M; = (I — £(T) (£(T) £(T)) " £ (T)') ,
and let the matrix projecting onto the space orthogonal to the space spanned by
X bedenoted by Mx =1 — X (X'X )~' X'. Straightforward matrix manipulation

yields

DT (9—9)= (Ttrrt (T) Mt (T) 77) (T_%TTf(T)’MX“) . (A1)
(T2X' M X) " (T X' M)

Central limit theorems are now applied to the individual terms:

1
Tl (T) Mxf (T)rr = / FX (s) F¥ (s) ds
0
. 1
T 2irpf (T) Mxu = 0'/ FX (5) dwy (s)
0
1
T2X'M;X = A / wk (s) wf (s) dsA’
0

1
T 'X'Mpju = O’A/ wf (s) dw; (s) -
0

137
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Together with (A1), this implies that

DyT? (@ - 9) (fol F%(s) F¥ (s)lds) B ("fol FX (s) duwy (s))
(Afol E(s)wE (s) dsA') (UAfo1 wi (s) dw, (s)) ]
(& ¥ () FX (s)' ds) ™ f; FX (s) dun (s)

= U(ZI)_I 1 -1
(Jo wF () wE () ds) [ w (s) duw (s)

D.2 Proof of Lemma 3

Simple matrix manipulations yield:

L s T-2 S o f (£) e

T~2D7'Spr) = - 1T

11—1 Z[r ng'U.t

T rrf () f @) 0 T2 S v f (1) X!
T_E ZEY-:T;I th(t),TT T 22[1‘ /YtXI

(Tpr (6-0))-
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Central limit theorems can now be applied to show that

T~2D7'Spey

[ o [3 F(s)dw (s) :l

oA f5 wi (s) dwy ()

B [e F (s) F(s) ds Jo F (s)we (s) dsA’ 5
A [T wi (s) F(s)ds A [ wk(s)we (s) dsA’

i [ L, 0 ] [ ( JLFX (s) FX (s)'ds) T FLRX () dwy (s) }

0 (A)” (fol wk (s)’ ds) fo £ (5) dw, (s)
= oZQf (1),
where
OF (r) = for F (t) dw; (s) 3 for F(s) F (s)'ds for F (s) wg (s)' ds 5
i Jo we (s) dwy (s) for wi (s) F(s)'ds  [§ we(s) we (s) ds

| (fol FX (s) FX (.s)'cis)nlfol FX (5) dw; (s) .
(S () wf () ds) [y wE (s) duwn (5

D.3 Proof of Lemma 4
Pt £(T)£(T) £(T) X o
T| xe(my x'X

ity [ L FOED £@YX
T\ xem x'x

Since

it is clear that
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and
DF*CD7! = o*TPfY.

Note that Pf is positive definite by construction. This permits use of the Cholesky
decomposition to write Pf = ZF (Zf )'. Since C 2 is the Cholesky decomposition

of C,

DFiC: = (oX)Zf & (C1)

G-iDr = o' (Zf)7'= L

(C1) implies that

1 _lrf(T)’f(T) £(T)' X

M'D7' = C7iDr =Di D;
X'E(T) X'X

1

JLF(s)F(s)ds [, F(s)wk(s) ds
[l we(s) F (s) ds [ wi (s) wi (s)' ds

= o' (ZH)'=7'x 5

| S F () F(s)ds [y F(s)we(s) ds

[l we (s) F(s) ds [y wi () wi (s)' ds

= o ' (Z{) 5.
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The distribution of the transformed parameters can then be obtained
N (6 - e) - (M-lD;I) (DTT% (9 - 9))

JLF(s)F(s)ds [} F(s)wk(s) ds
Jhwi(s)F (s ds [y we(s)wk(s) ds

= ot (zF)7! S %
k

( fy FX (s) FX (s) ds) ” fy F¥ (s) dwy (s)
(Jitwf () wf (sY ds) ™ Jy wE (s)dwn (5

(=)

JYF(s)F(s)ds [ F(s)wk(s) ds

- @ 1
j;)l wy. (s) F (s) ds Jo we (8) wi (s) ds

-1
( [LFX (s) FX (s)'ds) [LFX (5) dwy (s)
-1
(Jo wE () wE (s)'ds) g w (s) duwn (s)
It is then clear that the asymptotic distribution does not depend on nuisance

parameters. |

D.4 Proof of Theorem 12

Lemma D1 below will be used extensively in the proof of Theorem 6.3. Before

stating it, some additional notation is required. Consider the model

y=XB+u,
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where the hypothesis of interest is R3 = r. Then let L' = [ R D ] , where D

is chosen such that L has full rank. The model can then be rewritten as

y = (XL (LB) +u
- - B
= [}{1 || 7|
B3
= X’]_‘B; + 1%2,33 + u
Since 8] = Rf, the hypothesis of interest is now Hy : B} = r. The model can now
be transformed such that all parameters other than (] are eliminated. For this
B N -
purpose, use Mz, =I—X> (XQXQ) X} projecting off the space spanned by X,
and rewrite the model to its final form:
Mzy = Mg X0} + Mg, Xof;+ Mgu <
vy = X;B]+ut.
Lemma 6 F* for testing R3 = r in the model
y=XB+u

is computationally equivalent to testing B = r in the model
y' = Xiby +u'

The proof of this lemma can be found in Chapter 2. Lemma 6 is now utilized to

prove Theorem 6.3.

D.4.1 Proof of (a)

Let
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where D is chosen such that L has full rank (k;), and define
(% %) = XL~
X7 = MiMg X,
u* = MiMgzu, and
y" = MfMyzy.
Using these definitions, Model (6.1) can be rewritten in the following manner:

y = f(Ma+ (XL—l) (LB) +u

= f(T)a+[)'(1)'(2] ZI +u
2

f(T)a+ X108 + Xof5 +u

Since X; and X, are linear combinations of X, they too contain unit root pro-
cesses as long as the original assumption of just one cointegration relationship is
maintained; moreover, they will still be uncorrelated with u. This implies that
Assumptions 5 and 6 hold for the reparametrized model. Then by Lemma D1, it
is known that the hypothesis of interest, Hf : RX3 = r, is equivalent to testing

the hypothesis H : 3} = r in the model
y = X[B1+u". (D1.1)
All that remains is then to derive the asymptotic distribution of
F*=T(8—r)[B]" (81— 1),
where B* is defined as B, but for (D1.1). Now note that
T(Bi-6) = [T X T

= 0'(1\“')_l (/0111')5 (s) 'u“): (s)'ds) —1/;1155 (s) dw, (s)
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where A* (A*) is 27 times the spectral density of X7, at frequency 0. Also, defining

51: in the natural way,

(~T) [rT]

TSl = ; Xl = ; Xie (uZ - Xn (BI - ﬁ‘{))

[rT] [rT]

= 3 Xt - > XiXi, (81 - 61)
t=1 t=1

= oA” /Or '(f (s) dwy (s)

" ( /ofwi oy (s),ds> ( /0 aF (s) 6F (s) ds) -

R e __ 2 T S Crel
Since C; =T7*3%",_, S1:S1:

T-'C; = o*A” /1 V (s)' V (s)ds(A) . (D1.2)
0

;,:.:'I_;.LL"__..‘.}H Zy L—* I
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Using (D1.2), the asymptotic distribution of B* can be found:

1

T-'B* = [T72(X;) Xi] LriCr [T (XD X
1 -1 i

A | wF (s)aF (s) d A“') o2A* ' “y/

N < /qu (s) @ (s) ds (A") /\/(;V(s)V(s)ds(A) <

—1

(v [ 5f (5)af (5) ds (1) )

I

o2 (A*) 7 ( /0 1 Wl (s) g (s) ds) B /0 : V(s) V(s)ds x

(/01 Wt (s) by (s) ds) N (A"

The distribution of F* can now be obtained:

Fro= T (Bi-r) B (B ) =T (B - 87) (17877 T (B - 1)

/ 6 (s) duwy <s)}

—(A“’)'l ( /o 1@5 (s)wf (s)'ds>_1 /0 : V(s) V(s)ds

(/: 1215 (s) zbf (s)'ds) B (A')—l} B
(A")7 ( /0 : wf (s)wf (s)'ds)—l /0 : Wl (s) dw (s):l

- /

= /;lzbf(s)dwl(s)] [/OIV(S)'V(s)ds]—I[/Olzbf(s)dwl(s)}. [ |

-1 !

= -(A")'l ( /0 : Wl (s)by (s)'ds>
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D.4.2 Proof of (b)

The hypothesis being tested is HY : Rfa = r. Again, the model is transformed

and the distribution of F* can be obtained from a simplified expression.

y = f(T)a+XB+ue (D2.1)
Mxy = Mxf(T)a+ Mxu &

g = fX(T)a+1,
or equivalently
go=fAa+i, t=1,.,T.

Using the result of Lemma D1, what remains is to derive the asymptotic distri-

bution of
’ - -1
Ff =T (Rfa-r) |RFB*R™|  (Rf&a—r)/q.
where BX is calculated from the transformed model in (D2.1). Now,

7T (6 —a) = o ( / X (s) FX (s>'ds) - / " FX (5) dun (s)
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and § for the transformed model, denoted by S, will be:

[rT} [rT)

T—%TTS[‘le = T—%TT Z fx (t)';jt = 27‘1‘ Z @ OGS a))
t=1

(rT] (rT]

= Tirp Y @) a-T2rry 5@ X @) (@-a)

[TT] [Tﬂ
= T airpy  fX(8) @~ (T‘ITTE FEE @ TT)
t=1 t=1

(r7'T# (& - o))
= a/orFx (s)dw; (s) — o (/OrFX (s) F¥ (3)'ds> :

( /0 : FX (s)FX (s)'ds) B /0 : FX (s) dw, (s)

= oVF(r).

C for the transformed model will then be

rrCxXrr = T'li( -%TTStX> (T—%TTStX),
t=1

1
= 02/ VE(r) (VF (r))'dr,
0
and B for the transformed model can be expressed as

-1

et BXrzt = (T 'ref* (T) £5 (T)77) " 70CXrp (Tt (T) £ (T) 1)

= 02</0 FX (s) FX(s)'d ) /VF(r ) (VE (r)) dr

1

(/01 FX (s) FX (S)'ds)_ ,
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implying that under the null hypothesis

F* = T(RF(a-a) [RFBXR] T (RT(a-a) /g
— T((A7R%rr) 7' (& - @) [(A7'RFrr) ' B o (rrRF AT x
(AT'Rfrr) 77" (& — @) /g
= (( A7 RFrp) Tty (& — a))' [(A_IRFTT) 7' BXrg! (TTRF,A—I)] 7

((A_IR‘DTT) T%'r;1 (& — a)) /q

= (R*a (fol FX(s) F% (S)'dS) - /01 FX (s) duy (8)>

’

‘o / FX(s) FX (s) ds) / VE(r) (VF(r)) dr

=
([ e ds)"m} )
(

R‘a FX (s) FX (s)’ ds) / FX (s) dw, (s)>
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(R‘ / FX (s) F* (s) d3> / F* (S)dw1(3))’

[R' / FX (s) FX (s) ds) / VE(r) (VF (r))

-1

FX (s) FX (s) cls)~ (R*)

(L
(R* / FX (s) FX (s)' ds) / FX (s) du, (s)> . |

D.4.3 Proof of (c)

The hypothesis under consideration is Hj : Rfa =, in models of the type
y=£(T)a+u,
and in this case
Fr=T(RFa—r) [RFBRF'] " (RF&a—1) /a.

In this model,

[rT} [rT]

T4rrGey = T- 2TTZf(t)u¢ T- TTZf(t {r;lT%(d-a)}

= O’/(;TF(S)dwl(S)

_a/orp(s)F(s)’ds(/ F(s)F (s) s) /F(s duw, (s),
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and therefore

rCrr = T (b (17426

t=1

= o [ Vo (vF @) an
and

B = (TTE@)ED) " C T @ ET) ™

= d (/OIF(S)F(S)’ds)

/0 VF () (VF () dr ( /o ' F(s) F (s) ds)
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The asymptotic distribution of F** can now be obtained:

F* = T(RFa—r) [RFBRF'] " (RFa—1) /q
= T((ARFrr) 77 (&~ ) [(A7RFrr) ' Brst (rrR7 AT x
((A'Rfrr) r7t (& —a)) /q
= (( AT'RFry) Tirs' (& - a))' [(A-IRFTT) 77 BTl (TTRF'A_I)] T

((A'RFrr) Thrit (6 - ) /q

~ & ( / Fs) F(s>’ds)_1 / P (s) du, <s>}l

—R" (/01 F (s) F(s)'ds) B /0l VE(r) (VF (r)) dr

</01 F (s) F (s) ds) B (R
<R' (/OIF(S)F(s)'ds>—1/01F(s)dwl (s)>. -

-1

D.5 Proof of Lemma 5

This proof is virtually the same as that of Theorem 12. Only the few parts that

are different will be redone.
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D.5.1 Proof of (a)

As in the proof of Theorem 12, the hypothesis of interest is Hg : 8] = 7 in the

model
Yy =X[6] +u",

where
X[ = lwaszfl,

ut = Z\/[fM;(zu and

Yy = MiMyzy.

What remains is then to derive the asymptotic distribution of F*. To this end, let

o2 denote the long run variance of u. In the transformed model,
F*=T (B: - r) [B*]" (BI — r) .

Now, since u* is a unit root process,

-1

(Bi-81) = [T i) xi]

= o, (A")'1 ( /0 1 WF (s) wF (s)'ds)

-1

/Ol u)f (s)wy (s)ds
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and therefore

and

T—'].Bt

TN

[rT}] [rT}

= T Xiu -T2y XiXi (B - 6i)
t=1 t=1
o A" / F (s)wy (s) ds
0

—o,A* ( /0 ' wy (s)wf (s)'ds) ( /0 lu‘;f (s)'wf (s) ds)

/lu‘zf (s) wi (s)ds
0
- O—uAt‘/u (T)

-1

1
T-3Cr = a2A" / V, (s) Vi (s)ds (A"
0

= [Ty X T TG T () X

= o2 (A")" (/Olu}f (s) @i (s) ds) —1/(;1 Vi (s) Vi (s) ds x

er. Further reproduction prohibited without permissionyzaww.manaraa.com

153



154

Finally

Fro= T(B-r) (BT (B )

(8 -81) [rB7) 7 (8L - 57)

/

= -A'(/Ol Wl (s)wg (s) s) /w (s) wl(s)ds}

—A" </01 W (s) g (s)'ds) B /01 Vi (s)' Vi (s)ds

—1 -1

( /0 Iw,f (s)wf (s)'ds) (A7
K ( /0 ' aF (s)&F (s)'ds) B /O aF (s)wy (s) ds}

_ -/01 W () wy (s) d J[/V(S)V(s } [/Olu“qu(s)wl(s)ds

and the proof of (a) is complete.

D.5.2 Proof of (b)
The hypothesis being tested is Hf : Rfa = r, in the transformed model
g=fX(T)a+1,
and what remains is to derive the asymptotic distribution of
F{ =T (RFa—r)' |RFB*R7| " (RF& ) /q.
Now, since i is a unit root process,

T;IT‘% (& —a) =0, (/01 FX (s) FX (3)'ds) N /01 FX (s)w, (s)ds

Reproduced with permission of the copyright owner. Further reproduction prohibited without pe{iRigSiaBnaraa.com



155

and
[rT}
T—%”'Tg[)r{'rj = T 21'TZf (t) &
. [fi] (rT]
= T7irpy @ @— (T ey 5@ f*@)rr
t=1 t=1
(T}IT“% (& — a))
urFX d—u(rFX FX’>
= U/o (s)w; (s)ds—o /0 (s) (s) ds | x
(/ FX(s)FX (s)d /F (s)wy (s)d
= V),
and

T2 CXrp = T_Ii (T‘%TTSS{) (T_%TTS'tX)I

t=1

= o} / VE ) (VS () ar

which in turn implies that

-1 . -~

T2 BX 2t = (T 'refX (T) £5(T) mr)” T27eCx7r

(T~ £ (T) £ (T) 7)™

o2 ( /0 ' PX (s) FX (s)'ds) B /0 VFE () (Ve ) ar

1

(/01 FX (s) FX (s)'ds)_ ,
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implying that under the null

F* = T(RF(a-a)) [RPBR7]" (B" (&~ e))/a

= (rRFT (&) [RFT2BR"] T (RFTE (@~ w) /g

(R"au< OlFX (s) FX (s)'ds>—1/olFx (s) dw, (s))
= <R (/ FX(s)FX (s)'d > /FX s)dwl(s))/

1

{R‘ ( /0 IFX(s)FX(s)'ds>— /O VE () (VE () ar

-1

/01 FX(s)F*¥ (3)'ds> B (R

(
(R‘ (/01 FX (s) FX (s) ds) - /01 F* (s) dw; (s)) . =
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D.5.3 Proof of (c)

The hypothesis of interest is HY : RFfa = r in models of the type
y=Ff(T)a+u,
and
P =T(RFa—r) [RFBRF'] " (RFa—1) /q.
Now, since u is a unit root process,

A1t a-a v o ([ FOFES) [ Pow s

0

and

[rT} (rT)

T~ 3rpSpr = T err S fOw—-T  rr S S @) e {T'PIT—% (& — 04)}

t=1

= au/OTF(s) dw (s)

—o-u/:F(s)F(s)'ds (/;E(s)F(s)'ds>—1A1F(s)dw1 (s),

and therefore

T 2rCrr = T i (T—%TTSL) (T_%TTSt),

t=1

= o /0 VEF (r) (VF () dr
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and
T2B = (TTH(T)VE(T) TC(T7H (T £(D) ™
2 1 s s) o F(r ) T
N gu(/o F()F()ds) /OV;()(Vu())d
</1 F(s)F(s)'ds)
0
Finally

F* = T(R"(&-a)) [RFBR"] T (RF (& - ) /q
— T ((A'Rrr) 75 (&~ ) [(ARFrr) r7 Brrt (rrRF AT x
((A7'Rfrr) r7' (& —a)) /g
= ((A7'RFry) T-iri (& - @) x

[(A"lRFTT) (T'zr;lér;l) (‘rTRF'A'l)]_1 x

((A—lRFTT) T—%T;l (& — a)) /q

= —R' (/01 F(s)F(s)'ds)_l‘/olF(s)wl (s)ds}’

[ (/01 F(s) F(s)'ds)—l /o1 VF (r) (VF (1)) dr

(/01 F(s) F(s)'ds>—1 (R
(R" (/01 F(s) F(s)'ds)—l /01 F(s) w (s) ds> . m

-1
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D.6 Determining the Number of Additional
Regressors

The issue which is investigated in this appendix is the choice of the number of
additional regressors (m) to include in regression (6.6). To this end, it is useful
to model the error terms in more detail than has been done before. Specifically,

consider the model
yp=ar+at+u, t=1,..,T

(=T}
(1 - L’YT) Ut = €, t= 27 3v sesy T1 uy = Z (H/T)z €1-1,
=1

ee=d(L)e, d(L)=)» dL}, Y ild]<oo, d(1)*>0,
1=0 i=0

where {e;} is a martingale difference sequence with E (e?|e,_1,€;—2,...) = 1 and
sup, F (e!) < oo. To further simplify matters, « is set to 0.' Under this speci-
fication, the errors can be modeled as being stationary by setting yr = %. This
would imply that {u.} has an AR coefficient of 4. Alternatively, the errors can be
modeled as local to a unit root by letting v; = (1 — 1) . For a fixed sample size
T, {w;} will have an AR coefficient of (1 — ), but as T — o0, {u,} will approach
a unit root process.

The modelling of the error as local to a unit root is useful when choosing m,
because the asymptotic distribution of the teststatistic can be found analytically
as a function of 4. This can then be used to simulate the asymptotic size and

power of the test for different choices of m. The results of those simulations will

ISimulations in Vogelsang [1998] indicate that this will not significantly affect the results.
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provide a basis for choosing m. Below, this is done for hypotheses of the form
Hy:oo=r2

Before proceeding to select m, some additional notation is required. Let
fm@t) =1t 2 .. tm ] and define 77 and F™(t) such that 77 f™(t) =
F™ (t/T) + o(1). The asymptotic distribution of Jr (m) and therefore F/ can

now be computed. The following lemma follows directly from Theorems 1 and 2

in Vogelsang (1998):

Lemma 7
a) If vy = ¥, with |3| < 1, then Jr (m) = 0.
b) If yr = (1 — 1), then Jp (m) = J5 (m), where

[Ews(s)2ds— [} F(s)Ws(s)ds( [ F(s)F(s)ds) ™" [ F(s)W5(s)ds _
w5 (s)2ds— [ F™(s) Ws(s)ds(fy F™(s)F™(s)'ds) ™" fo F™(s)¥s(s)ds

Jy (m) =
and
Vs (r) = /or exp (=7 (r — s)) dw; (s) .

From Lemma. 7, it is clear that when the errors are I (1), Jr (m) has a non-
degenerate distribution; when the errors are [ (0) , Jr (m) converges to zero. For
the sake of completeness, the exact expression for the asymptotic distribution of

FY is given in the following lemma:

Lemma 8 a) When vy =% and |7| < 1,

-1
F/ = (—6w1(1)+12/013ds>- [_6 12]/1VF(r)VF(r)'dr 0 :

0 12

2Note that for the model with regressors, the number of simulations required to implement
the method described above is substantial, since the critical values differ for each £ and g. This
implies that a different (m, b) pair would have to be found for each (k. q) combination.
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where

wy (7T 4r — 3r2  —6r + 612 wy (1
| MO | (1)
Jo sdwy (s) 2r2 —2r3  —3r? + 473 fy sdwy (s)

b) When'yT=(1—;é),

2

F’ = (—6/01‘11.-,(3)ds+12/013\11:,(3)035)

-1

o | [ WO a| ] xeetbi ),
0 . 12
where
V—YF( ) — fo" \II’T' (3) ds
Jo 505 (s)ds
4r — 3r®2  —6r + 61 _];)1 U (s)ds

2r2 —2r%  —3r? + 473 fy sT5 (s)ds

D.6.1 Proof of Lemmma 8

First note that part a) follows trivially from Theorem 6.3. To prove b), the same

principles as in Vogelsang (1998) will be employed. For the derivations below, it

is necessary to define U5 (r) = [ exp (=¥ (r — 5)) dw; (s) . Then

-1

/l F(s)¥s5(s)ds

0

T 277l (& —a) = d(1) (/01 F (s) F(s)'ds)
and

T 27 Brzt = d(1)° (/1 F(s) F(s) ds) ‘1/01 VE (r) (VF (r)) dr-

0
-1

(/OlF(s)ms)’ds) ,
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where
V) = [ F)uss)ds -
0

(/OrF(s)F(s)'ds) (/OIF(s)F(s)'ds) - /OIF(s) ., (s) ds.

Then, from Theorem 2 in Vogelsang (1998), it is known that

Jr(m) = SSRp — SSRy
’ SSRy
J—'y (m) fol ‘[’ﬁ(s)zds_.fol F(s)'\[lﬁ(s)ds(fol F(S)F(s)'ds)-l fol F(s)¥s(s)ds |

[ ws(s)2ds—fo F™(s) @5 (s)ds( [y Fm(s)pm(s)'ds)“ [ Fm(s)¥5(s)ds -
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and hence, letting R = [0 1],

FJ = (d(l)R(‘/OIF(S)F(S),C{S)_J/(:F(S)‘I’r,(S)dS)l

[d(1)2R (/01 F(s) F(s)'ds> B /01 VF () (VF () dr

/01 F (s) F(s) ds) N R’:l

(
(d(l) R </01 F (s) F (s) ds) B /0l F(s)¥5(s) ds) exp(—bJ5 (m))

/IF(S)\I/:, )ds>
0

—1

-1

I
N
ay)
N
;”‘\.
B>
@
]
@
Q.

9
N—
@

(R ( /0 F(s) F(s)'ds) B /0 P (5) s (s) ds> exp(—bJ5 (m)).

Using F (s)’ = [1 s] simple algebra yields the result. W

The asymptotic distribution of F/ is the same as that of F* when the errors are
stationary. When the errors are local to a unit root, this is no longer the case. As
expected, the distribution does not depend on nuisance parameters, but it does

depend on m and on b.

Reproduced with permission of the copyright owner. Further reproduction prohibited without pgyRi&SHBnaraa.com



164

g =20 '0%p = 2p O
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Using the distribution of the modified test statistic derived in Lemma 8, the
asymptotic size of the test for values of m ranging from 3 to 9 and 4 from 0 to
12 have been simulated and are tabulated in Table D.1. It is clear that the while
size is decreasing in m, the changes are very small.

As the final criterion for choosing m, asymptotic power under local alterna-
tives is simulated for different local-to-unit-root processes. The local alternative

employed is
H:ax=r + T 3c.

The following lemma provides the distribution of the test statistic under Hj :

Lemma 9 Ifvyr = (1 — %) , then under Hy,

f?llpﬁ,(s)ds]_*_ c )I

o S¥5(s)ds d(1)

F/ = ([ -6 12 ]
[[ —6 12]/0 Ve (r) (V..f(r))’dr[ I‘f ”
([ —6 12 ] [ {93{;;((53))333] +d—(cf)> exp(—bJs (m)).
D.6.2 Proof of Lemma 9

Under the alternative

Fi=T (a2 - T-%c)' [RBR'] - (&z —r— T-%c) / (gexp(bJr (m)) .

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



166

Clearly neither the distribution of RBR' nor the distribution of exp(bJr (m) are

affected by the hypothesis. Rewriting F/,

F/' =T (&2 —-r— T“%c), [RBR’] - (&2 —r— T“éc) / (g exp(bJT (m))

— (t@a-o)—c) [RBR] (T} (@-a)~c) / (gexp(sr (m))

R / F (s) F (s) ds) / VE (r) (VE (1)) dr

= ( /F(S)F(s) 3)_1/015'(3)%(s)ds-}-c/d(l)),

-1

( 1 F(s) F (s) ds) TR

0

(R / F(s) F (s) ds) /0 F(s)\Il.-,(s)ds—i-c/d(l)) exp(—bJs (m))

. 14
o 12| ff FEE L aq)
Jo s¥5(s)ds

[ 6 12 / VEF (r) (VE (r)) dr

[_6 12] Jo#ds | | an) | exp(obsy ().  m
ﬁ)ls\ll.y(s)ds

Using the distribution in Lemma 9, the asymptotic power of F/ has been
simulated for ¢/d(1) = 5, 10, 15, 20, 25, ¥ =0, 5, 10 and m = 3, .., 10. The results

can be found in Table D.2. Power increases with ¢/d(1) and 4. While power
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is strictly increasing in m, it seems to flatten around m = 9. Since size wasn'’t

affected by m, m is chosen to be 9. The corresponding value for b at the 95% level

is 1.82.
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